Notice
The information in this document is subject to change without notice.

SoundTraxx (Throttle Up!) shall not be liable for technical or editorial errors or omissions contained herein; nor for incidental or consequential damages resulting from the furnishing, performance or use of this material.

This document contains information protected by copyright. No part of this document may be photocopied or reproduced in any form without the prior written consent of Throttle Up! Corp.

Product names mentioned herein may be trademarks and/or registered trademarks of their respective companies.

SoundTraxx and Tsunami are registered trademarks of Throttle Up! Corp.
SoundTraxx DCC, Digital Sound Decoder, Dynamic Digital Exhaust, Auto-Exhaust and Hyperlight are trademarks of Throttle Up! Corp.
Table of Contents

All Aboard! .. 1
Overview... 1

Operation ... 2
Using Your Tsunami Digital Sound Decoder... 2

Basics of Programming ... 6
Programming the CVs ... 6
Step 1: Configuring the Address .. 13
Step 2: Configuring the Decoder .. 14
Step 3: Configuring the Throttle .. 16
Step 4: Configuring for Consist Operation .. 21
Step 5: Function Mapping .. 24
Step 6: Configuring the Lighting Outputs .. 29

Sound Programming ... 34
Step 7: Modifying the Sound Effects .. 34

Advanced Programming ... 48
Step 8: Setting up the Hyperdrive .. 48
Step 9: Configuring Tsunami’s Miscellaneous Features .. 51

Troubleshooting .. 57

Appendix A - Decimal-Hex-Binary Conversion ... 59
Appendix B - List of Configuration Variables ... 60
Appendix C - License Agreement .. 61
Appendix D - Service and Warranty Policy ... 62
Overview

Congratulations on the purchase of your SoundTraxx® Tsunami® Digital Sound Decoder™ (DSD). This User’s Guide will walk you through the various aspects of programming your Tsunami Decoder, as well as some tips on troubleshooting. For the power user, the Tsunami Technical Reference provides a list of all the CVs available for use with Tsunami decoders and their exact functions and make-up for those who wish to have a complete reference for advanced programming techniques.

Technical Bulletins and Application Notes covering various topics are also published from time to time, and these may be downloaded free of charge from our website at www.soundtraxx.com.
Using Your Tsunami Digital Sound Decoder

Your SoundTraxx Tsunami has been shipped with all CVs pre-programmed so you can begin using your locomotive immediately without having to worry about what adjustments to make. Function assignments are as follows:

Diesel Decoder Function Output Assignments

<table>
<thead>
<tr>
<th>Function Key</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0</td>
<td>Headlight/Backup Light</td>
</tr>
<tr>
<td>F1</td>
<td>Bell</td>
</tr>
<tr>
<td>F2</td>
<td>Airhorn</td>
</tr>
<tr>
<td>F3</td>
<td>Short Airhorn</td>
</tr>
<tr>
<td>F4</td>
<td>Dynamic Brake</td>
</tr>
<tr>
<td>F5</td>
<td>FX5 Output</td>
</tr>
<tr>
<td>F6</td>
<td>FX6 Output</td>
</tr>
<tr>
<td>F7</td>
<td>Dimmer</td>
</tr>
<tr>
<td>F8</td>
<td>Mute the Sound</td>
</tr>
<tr>
<td>F9</td>
<td>Radiator Fans</td>
</tr>
<tr>
<td>F10</td>
<td>Air Compressor</td>
</tr>
<tr>
<td>F11</td>
<td>Brake Squeal/Release</td>
</tr>
<tr>
<td>F12</td>
<td>Coupler Clank</td>
</tr>
<tr>
<td>Throttle</td>
<td>Engine Exhaust</td>
</tr>
</tbody>
</table>

While these are the default settings, you may wish to make changes to the function mapping later. For now, simply set your controller to Locomotive 3, place the locomotive on the mainline and away you go! Now that you have control of your decoder, let’s see what happens!

Turn on the Lights

Press F0 on your cab to turn on the headlight. Reverse locomotive direction and the headlight turns off as the backup light turns on.

If you have wired your Tsunami decoder for Functions 5 and/or 6, pressing these keys will activate these effects. While waiting on a siding, you can press F7 to dim the headlight for an oncoming train.

Ring the Bell

Engineers are required to ring the bell during yard movement. To ring the bell, press F1 on your cab. This is an on/off function, i.e. once on, the bell will continue to ring until you turn it off. Press F1 again to turn it off.

Blow the Horn

Engineers are required to blow various airhorn signals to warn of the approaching train as well as notify both passengers and train crew to the planned movement of the locomotive. Some of these are signals for grade crossings, stopping, moving forward, backing up and more.
To activate the airhorn, press F2 on your cab; the longer you press the key, the longer the horn will blow. While this allows you to make short or long signals, F3 is designated as a ‘short’ horn so your shorts will have that nice, crisp, ‘toot’ regardless of how responsive your cab controls are.

Learning and using the various horn signals can add a lot of fun to your operating sessions! Some of the more common signals are indicated here. Try a grade-crossing signal!

Horn Signals

<table>
<thead>
<tr>
<th>Note:</th>
<th></th>
<th>= Long Blast</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>= Short Blast</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>Approaching grade crossing. (Hold final blast until crossing is occupied.)</td>
</tr>
<tr>
<td>—</td>
<td>— —</td>
<td>Flagman protect rear.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brakes applied.</td>
</tr>
<tr>
<td>— — — —</td>
<td>Release brakes, proceed forward.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>When stopped, back up; when moving, stop.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Request signal from trainman.</td>
</tr>
<tr>
<td>— — — — — — — — —</td>
<td>Warning signal (used when approaching areas with obstructed views, approaching passenger or freight trains, and passing freight trains).</td>
<td></td>
</tr>
</tbody>
</table>

Start the Prime Mover

To start the diesel engine, simply increase the throttle to speed step 1. The engine will crank over several times and settle into a nice idle. On a few command stations, such as the NCE Power Cab, the Tsunami decoder may skip the startup sequence and immediately play the idle sound. If this happens, press emergency stop first, then increase the throttle and you should hear the engine start.

Once the engine has reached idle, it will change RPM automatically in response to changes in the locomotive speed. To shut the engine sound off, press your cab’s emergency stop button once.

Keep in mind that diesel locomotives do not work like a car or truck. On the prototype, the diesel engine turns a generator, which then powers electric traction motors mounted on the axles. As such, there is not a one-to-one relationship between the locomotive speed and the diesel’s RPM. This is why, for example, you may hear a train crawling up a hill at 5 mph with the engines at full power.

Because of their size (an EMD 645 displaces 645 cubic inches per cylinder!), a diesel engine does not rev as quickly as an automobile engine. Even under full throttle acceleration, a typical prototype diesel requires between 15 to 20 seconds to reach full speed and about the same amount of time to return to an idle.
Operation

Your Tsunami decoder uses sounds recorded from actual locomotives and requires an amount of time similar to the prototype to reach full RPM. This can cause a certain disconnect between the model’s speed and the engine sound as many modelers tend run their trains faster and over shorter distances than the prototype.

Several solutions exist if you are experiencing this type of problem:

- Make gradual changes to your throttle speed to better match the sound.
- Decrease the engine RPM sensitivity so the decoder requires greater throttle changes to increase the RPM sound (see Sound Programming - Engine Control).
- Increase the Tsunami’s momentum settings (See Basics of Programming - Step 3: Configuring the Throttle) and let the decoder match the train speed and sound automatically. For most locomotives, a setting of 15 works well.
- Switch to Manual Notching Mode and control the engine RPM sound manually. See Sound Programming - Engine Control for more information.

Dynamic Brakes
When assigned to mountainous terrain, diesel locomotives were often equipped with dynamic brakes, which used the regenerative properties of the traction motors to slow the train on downhill grades.

To turn the dynamic brakes on and off, simply press the F4 button on your cab. Note that the dynamic brakes can only be heard when the engine sound is at idle or higher.

For a more prototypical experience, you can optionally set up the Tsunami decoder so that the diesel engine RPMs are lowered to a preset speed automatically whenever the dynamic brakes are turned on. Refer to the section titled Sound Programming - Engine Control for more details.

Radiator Fans
Whenever the engine sound is playing, the radiator fans will turn on automatically.

You can also set the Tsunami so the fans may be controlled manually using Function Key F9. See section Sound Programming - Engine Control.

Air Compressor
Whenever the engine sound is playing, the air compressor will run for a short time and then automatically cycle on and off at random intervals.

The Tsunami can be optionally configured so the compressor is manually controlled using Function Key F10. See the section Sound Programming - Engine Control.
Air Tank Dryer Poppet Valve
Whenever the engine is running, you will hear a short “phttt!” every so often from the air tank’s poppet valve. While there is no function to turn this sound on or off, you can raise or lower its volume level. See Sound Programming - Audio Mixer for details.

Activating other Functions and Effects
Depending on the number of function keys provided on your cab, you might have additional functions immediately available for you to activate.

Mute the Sound
Pressing F8 on all Tsunami decoders will gradually mute all sound effects, which is great for a quick answer of the telephone! Pressing it a second time will allow you to hear the sounds again.

Brake Squeal/Release
The sound of the brakes squealing is typically heard just before the wheels of the locomotive stop turning. Pressing F11 when the engine is moving will initiate a brake squeal effect. Press F11 again to turn this feature off.

Coupler Clank
Pressing F12 will activate the coupler clank sound effect. See how well you can time the effect to the actual coupling of the locomotive to the train!

As you see, no programming is necessary to begin enjoying your DSD! However, after you have had a chance to play with your decoder for a little while, you may wish to make some changes such as selecting a new address or altering a sound effect. The following section will introduce you to CVs and how and why you might wish to change them.
Basics of Programming

Programming the CVs

What is a CV?
CV stands for Configuration Variable, which is the industry-adopted term for a decoder’s user-programmable memory locations. CVs allow you to customize individual decoder properties such as the address, momentum, throttle response, sound volume and much more. Once a CV has been programmed, the setting will be permanently remembered even after the power has been turned off. A CV can be modified as often as necessary by simply reprogramming it with a new value.

With the large number of CVs available, first inspection of the available options may cause confusion and little panic! Relax. As you have already seen, the DSD has been shipped with all CVs pre-programmed so you can begin using your locomotive immediately without having to worry about what adjustments to make.

The following paragraphs break the sound decoder’s CVs into various subsystems so it is only necessary to change a few CVs at a time. As you become comfortable with its operation, move onto a new section and begin exploring the options and capabilities found there. For more technically inclined users, detailed information on any CV can be found in the Tsunami Technical Reference.

Bits and Bytes
One of the most confusing aspects of programming a CV is figuring out what all the different bits, bytes and x’s found in the various decoder manuals mean. The problem is compounded further by differences in each command station manufacturer’s user interface. For users unfamiliar with such terms, a short math lesson (ugh!) is in order before proceeding:

Each decoder CV stores a numeric value that can be represented in one of three forms:

Decimal - This is the form everyone is familiar with and we use in our day-to-day lives. Numbers are represented as a sequence of digits composed of the numerals 0,1,2,3,4,5,6,7,8, and 9.

Hexadecimal - Also referred to as simply “hex”, this is a more specialized number representation that, in addition to 0 through 9, also uses the characters A-F. It has the advantage that a given decimal number can be more compactly represented. For example, the decimal number 127 converts to a simple 7F in hex (one less digit). This allows user interfaces with a limited number of digits (i.e., the LCD on your cab) to display a wider range of numbers.

Binary - Binary numbers get their name from the fact they use only two digits, 0 and 1, called ‘bits.’ Binary is the fundamental number system used by all computers, including the ones found inside a digital decoder. Because
there are only two bit values, it takes more digits to represent a number using binary. The decimal number 127, for example, is written as 01111111 in binary notation. A ‘byte’ is a binary number made up of eight bits. And a ‘nibble’ is one-half of one byte or four bits. Really! We didn’t make that up.

Each CV is made up of one byte (i.e., eight bits) and can store any number from 0 to 255. Most of the CVs contain a single piece of data that can be easily represented in any of the three formats described above. For example, CV 3 (Baseline Acceleration Rate) can be loaded with any value from 0 to 255 and it will always and only affect one thing -- the acceleration rate.

Some CVs use individual bits to control different features. This allows up to eight distinct features to be controlled by a single CV and keeps the number of CVs more manageable. As the bit variables can take on only one of two values (0 and 1), they are usually used for simple variables that are either ON or OFF, enabled or disabled, or something similar. Unfortunately, bit variables are difficult to represent in any form other than binary and still preserve any meaning. Because most DCC system user interfaces don’t use binary representation, these numbers are the most difficult to work with and require a tedious series of additions to convert to the decimal or hex form used by most systems.

We have tried to use the decimal number system in this manual when describing the proper values to program into a given CV; however, you will occasionally find values listed in the Technical Reference in binary, hex and decimal values. Hex numbers can be distinguished from a decimal number by noting a “0x” prefix. Thus 0x10 is the hex version of 16 and not 10 as one might guess. Binary numbers are represented using a ‘b’ suffix. 100b is really the number four and not 100. To further assist the math-impaired, we have provided a handy-dandy conversion table in Appendix A that allows one to quickly convert between decimal, hex and binary.

When working with individual bits, such as in CV 29, we suggest the following procedure for determining the correct value to program. Referring to the CV description, write down the value desired for each individual bit. For example, we would like to set CV 29 so that speed tables and 28 speed-step mode are enabled. Referring to the Technical Reference, we see that bits 1 and 4 should both be set to 1 to enable the desired features, with all other bits cleared to 0. Write down the individual bit values as shown below:

<table>
<thead>
<tr>
<th>bit 7</th>
<th>bit 6</th>
<th>bit 5</th>
<th>bit 4</th>
<th>bit 3</th>
<th>bit 2</th>
<th>bit 1</th>
<th>bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

We then look up the binary value 00010010 in Appendix A and see that it corresponds to the decimal value 18 (0x12 in hex). This is the value to use when programming the CV.
Basics of Programming

If you don’t have the conversion chart available, you can also calculate the value in the following manner. Reading from right to left in the figure below, note that there is a decimal value associated with each bit, beginning with a 1 for bit 0 and doubling in value for each successive bit (i.e., bit 0 = 1, bit 1 = 2, bit 2 = 4, bit 3 = 8, bit 4 = 16, bit 5 = 32, bit 6 = 64, and bit 7 = 128). This value is only counted when the bit is enabled with a “1.” Looking at the figure below, you can see that using this method, bit 1 has a value of 2 and bit 4 has a value of 16. Adding these two numbers together gives the correct decimal value of 18.

Programming Methods
There are two methods for changing the sound decoder’s CVs:

Service Mode Programming - This programming mode usually requires the locomotive to be placed on a special programming track or connected to a dedicated programmer. Tsunami is an advanced line of decoders and support four types of service mode instructions:

- Address Mode - Can change CV 1 (Primary Address) only.
- Register Mode - Can change CVs 1, 2, 3, 4, 7, 8 and 29 only.
- Paged Mode - Uses a page register to indirectly modify any CV.
- Direct Mode - Can directly change any CV.

Operations Mode Programming - Sometimes called ‘Ops Mode’ or ‘Programming on the Main’, this programming mode allows the CVs to be changed while the locomotive is operating on the layout even when other locomotives are present. The neat thing about this mode is that the CVs can be changed in the middle of operation allowing the engineer, for example, to increase the momentum rate of a locomotive after it couples to a train. The main disadvantage of Operations Mode Programming is that the CV data cannot be read back to verify its value.

Reading CVs
Certain command stations also allow you to read a CV during Service Mode Programming, which is useful to verify its current setting. If you have trouble reading or verifying CVs, the problem may be due to the design of your command station and not the DSD itself. Tsunami and all other decoders communicate back to the command station using what’s called an acknowledgment pulse, which is defined in NMRA S-9.2.3 as “an increased load on the programming track of at least 60mA for at least 6ms ± 1ms.” Like most decoders, the DSD generates the acknowledgment pulse by momentarily applying power to the motor. You can often visually verify that the Tsunami is properly responding to your programmer by observing a slight twitch in the motor shaft when a read or write command is given.
If your DSD is otherwise working properly (i.e., responds properly on the mainline to speed and direction commands) but your command station is having trouble reading CV data from the DSD, it may be due to incompatibilities between the electrical requirements of the DSD (which are different from conventional decoders due to the added audio circuitry) and the electrical characteristics of your programming track. In such an event, we suggest you simply go ahead and program the data into the CVs anyway. Usually the DSD will accept the data and function properly when placed back on the main track.

Another option is to use a Programming Track Booster, such as the SoundTraxx PTB-100 (P.N. 829002). The PTB-100 amplifies the programming track signals to levels that work best with Tsunami. It is easy to install (see below) and inexpensive. An advantage to using the PTB-100 is that it also provides short circuit detection and some helpful diagnostics. It works well with all SoundTraxx decoders.

Figure 1 - General Wiring Diagram for the SoundTraxx PTB-100

Finally, if you continue to experience difficulties, try a different programming mode. If your system supports it, the best way to program the CVs is with Operations Mode, as it allows you to immediately see or hear the results of your changes. It is important, however, to realize that not all programming modes will program all CVs. Additionally, the specific programming mode you use will depend upon the type of DCC system you are using. Some of the newer DCC systems can automatically select the proper programming mode so all you need to do is specify the CV number and its new value. On the other hand, some systems support only a few of the programming modes and may restrict which CVs you can program. If in doubt, refer to your DCC system’s manual or contact the manufacturer to determine which methods they support.
Programming Procedure
As each DCC system is different, the procedure for programming a CV will vary depending upon the system. Unfortunately, we cannot provide detailed instructions to cover every command station and have to assume that you have some level of understanding regarding its capabilities and operating procedures. For specific programming procedures, please consult your DCC system manual.

Locking and Unlocking CVs
The CV Lock/Unlock feature allows you to program a decoder without the danger of overwriting the programming in another. This is especially useful in installations where multiple decoders are used. For example, if you have installed a function decoder in addition to the sound decoder, you may wish to lock the CVs after programming to prevent accidentally programming one decoder or the other.

CV 15, CV Unlock Code
CV 16, CV Lock Code
CV 30, Error Information/Alternate Mode Selection

To use the CV Lock feature implemented in CVs 15 and 16, bit 0 of CV 30 must first be set to 1 (the default value is 0). This is to avoid inadvertently locking the decoder when the CV Lock feature is not needed.

CVs 15 and 16 are used for locking and unlocking the decoder. CV 15 is the Unlock Code and may be programmed to any value from 0 to 255 regardless of whether the decoder is locked or unlocked. CV 16 is the Lock Code and may be set to any value from 0 to 7, but only when the decoder is unlocked. Attempts to program CV 16 with a value greater than 7 will be ignored.

The decoder is unlocked when the value in CV 15 matches the value in CV 16. Otherwise the decoder is locked and can not be programmed in either Operations Mode or Service Mode. Further, a locked decoder cannot be reset to its factory defaults until it is unlocked. Tsunami decoders are shipped from the factory with all CVs unlocked, that is, CV 15 and 16 are both set to 0.

Note that if the decoder is unlocked, changing the value in CV 16 will instantly lock the decoder. You must then set CV 15 to the same value as was just programmed into CV 16 to unlock the decoder again.

If you use the CV Locking feature for a multi-decoder installation in one model, each decoder must first have its Lock Code set in CV 16 prior to the installation of any other decoders. Otherwise, all the decoders will have the same Lock Code and the feature will not work. First install one decoder and program its Lock Code. Then install the next decoder and program its Lock Code. Since the first decoder is now locked, it will be unaffected by the programming of the second decoder (unless you accidentally set the Lock Code of the two decoders to the same value. If this happens you will need to disconnect one decoder and start over). Continue in this manner until all decoders have been installed and their Lock Codes have been set.
It is a good idea to set up a standardized system so you don’t forget the Lock Code settings. You might, for example, set all motor decoders to a CV Lock Value of 1, sound decoders to a value of 2, and function decoders to a value of 3. Keeping CV 15 set to 0 will guarantee the decoder stays locked until you are ready to begin programming.

Example: Let’s say you will be installing motor decoder, a sound decoder, and a function decoder in one locomotive. Using the previously described system, you would first install the motor decoder and set its Lock Code by programming CV 16 to 1. Since CV 15 (CV Unlock Code) is currently set to 0 (the default value), the decoder is immediately locked. Now install the sound decoder and set its Lock Code by programming CV 16 to 2. Since CV 15 is still set to 0, this decoder is also immediately locked. Now install the function decoder and set its Lock Code by programming CV 16 to 3. At this point, all three decoders are installed and locked. Starting with the motor decoder, set CV 15 to 1 to unlock and program the motor decoder. When you are finished, set CV 15 to 2 and program the sound decoder. Finally, set CV 15 to 3 and program the function decoder. When you are done, set CV 15 back to 0 to lock all the decoders.

If You Forget the Lock Code

As there are only eight possible combinations, you can easily determine a forgotten Lock Code using trial and error with the following procedure:

Place the locomotive on the Programming Track and set CV 15 to 0. Then try to read the value in CV 16. If CV 16 does not read back, the decoder is locked. Set CV 15 to 1 and try reading CV 16 once more. Again, if CV 16 does not read back, the decoder is still locked. Program CV 15 to 2 and try reading CV 16 again. Continuing in the manner, you should eventually find the value stored in CV 16 as it can only be programmed from 0 to 7. If you have tried setting CV 15 to all eight values from 0 to 7 and the decoder still does not respond, there may be a problem with the installation, the program track, or the decoder itself and further investigation will be required.

If you do not have access to a programming track with read-back capabilities (or are uncertain as to whether it is working properly), you can also use Operations Mode to discover the Lock Code by alternately programming CV 15 and setting another CV to a value where there is a known response. For example, changing CV 128 (Master Volume Control) will provide auditory feedback as to whether the decoder is unlocked by virtue of a change in sound level. Thus, you would begin by setting CV 15 to 0 and then setting CV 128 to 0. If the volume does not fall to 0, the decoder is locked. Then set CV 15 to 1 and try programming CV 128 again. Repeat this process until you find a value for CV 15 that results in a change in sound volume as you change CV 128.

Troubleshooting Tip: Even if you are not planning to use the CV Lock feature, it can still be accidentally activated by inadvertently programming CV 15 or 16 with a non-default value. If you have a decoder that is otherwise working properly (i.e., making sound and responding to throttle commands) but has suddenly stopped accepting CV changes, then first run through the procedure under “If you Forget the Lock Code” to determine if the decoder has been locked.
Resetting the CVs or Starting Over
Occasionally, something goes wrong and Tsunami will not respond as expected. Usually, this is caused by one or more CVs being programmed to the wrong value. The CVs can be quickly reset to their factory default values using the following procedure.

1. Place the locomotive on a powered section of track. Program CV 30 to 2 (or CV 8 to 8) using either Service Mode or Operations Mode.
2. Cycle power to the decoder by turning power to the track off and then back on.
3. After power is restored to the track, there should be no indication of activity other than the power LED turning on for a period of 6 seconds. If sound comes on immediately upon restoring power, the decoder did not reset. Repeat steps 1 and 2.
4. Once the 6-second period has elapsed, the sound should come on and the headlight, backup light, and onboard diagnostic light will blink 16 times indicating that the CVs were successfully reset.
5. Tsunami should now respond to short address 3 just as it did when it was first unpacked.
6. If you cannot get the decoder to reset, check to see that it has not been inadvertently locked (see If You Forget the Lock Code in the previous section).
Basic Programming

Step 1: Configuring the Address

The first CVs you may want to change are those that set Tsunami’s address:

- CV 1, Primary Address
- CV 17:18, Extended Address

Tsunami may be set up to recognize either the primary address (also called the short address), which provides a range of 1 to 127, or the extended (long) address, which has a range of 0001 to 9999. Whether you use the primary or extended address will first depend on whether or not your DCC system uses extended addressing (not all of them do, so if in doubt, see your command station owner’s manual.) Second, it will depend on your preferences and the numbering scheme you use for setting your decoder addresses. The extended address has the advantage that you can use all four digits of a locomotive’s road number for the decoder address making it easy to remember. Be aware that some DCC systems do not support the full range of available addresses.

Programming Notes: Both the primary and extended address may be changed at any time using Service Mode programming.

Primary Address

To use the primary address, set CV 1 to the desired address from 1 to 127.

Some DCC systems will also allow the decoder address to be modified using Operations Mode programming (consult your system manual for details). Please note that when programming in Operations Mode, the following restrictions apply:

- If the decoder’s primary address is enabled (i.e., CV 29, bit 5 is 0), only the extended address may be changed using Operations Mode.
- If the decoder’s extended address is enabled (i.e., CV 29, bit 5 is 1), only the primary address may be changed using Operations Mode.

Extended Address

The extended address is actually made up of two CVs, 17 and 18. Unless you are an experienced user, you should not try to program these CVs individually as a specific protocol is required in order for the DSD to accept the new data (see the Technical Reference for details). Since most command stations that support extended addressing will automatically generate the correct protocol, simply follow their instructions for setting the extended address.

Once the extended address is stored in CVs 17 and 18, bit 5 of CV 29 must be set to 1 so the decoder will recognize the extended address format. Otherwise, the decoder will continue to respond only to its primary address. See the next section, *Configuring the Decoder*.
Basic Programming

Step 2: Configuring the Decoder

The next CV you will want to change is CV 29 (Configuration Register 1). CV 29 is one of those complicated bit variables mentioned earlier and is used in conjunction with other CVs to set a multitude of decoder characteristics, such as locomotive direction, speed-step mode selection, speed table enable, and alternate power mode enable.

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Locomotive Direction: Causes the decoder to invert direction commands so that the locomotive runs in reverse when it receives a command to move forward and vice-versa. This operating mode is most useful for setting up diesel engines that ran with the long hood section forward. However, it is also useful for electronically correcting installations where the motor wires were accidentally reversed and avoids dismantling the locomotive a second time.

Speed Step Mode Selection: As it is a digital system, Tsunami splits the throttle voltage over its minimum and maximum range into discrete speed steps. Tsunami can be configured so there are 14, 28 or 128 individual speed steps. The largest number of steps will give the smoothest throttle response. Since not all DCC systems have the ability to control 28 or 128 speed steps, your choice will depend upon the capabilities of your command station.

Speed Table: Sets the decoder to use the speed table specified by CV 25 (see Configuring the Throttle).

Primary or Extended Address: Sets the decoder to recognize its primary address in CV 1 or extended address in CV 17:18 (see Configuring the Address).

Alternate (Analog) Power Mode: Enables the decoder to work with an alternate power mode (such as DC operation) as set by CV 12 when a DCC signal is not present.

To assist the novice user, we have created Table A on the next page that lists the correct value for CV 29 to get the desired operating modes.

To use the table, simply find the row that has the modes you want and program CV 29 with the listed value.

The advanced user should refer to the Technical Reference for more details. Remember, table values are in decimal. If your command station uses hexadecimal, you will need to convert the value shown using Appendix A.
Basic Programming

Table A. Quick-Reference Table for CV 29 Values

<table>
<thead>
<tr>
<th>Address Type</th>
<th>Use Speed Tables?</th>
<th>Analog Mode?</th>
<th>Speed Steps</th>
<th>Locomotive Direction</th>
<th>CV 29 Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary (CV1)</td>
<td>No</td>
<td>No</td>
<td>14</td>
<td>Normal</td>
<td>0</td>
</tr>
<tr>
<td>Primary (CV1)</td>
<td>No</td>
<td>No</td>
<td>14</td>
<td>Reversed</td>
<td>1</td>
</tr>
<tr>
<td>Primary (CV1)</td>
<td>No</td>
<td>No</td>
<td>28/128</td>
<td>Normal</td>
<td>2</td>
</tr>
<tr>
<td>Primary (CV1)</td>
<td>No</td>
<td>No</td>
<td>28/128</td>
<td>Reversed</td>
<td>3</td>
</tr>
<tr>
<td>Primary (CV1)</td>
<td>Yes</td>
<td>No</td>
<td>14</td>
<td>Normal</td>
<td>4</td>
</tr>
<tr>
<td>Primary (CV1)</td>
<td>No</td>
<td>Yes</td>
<td>14</td>
<td>Reversed</td>
<td>5</td>
</tr>
<tr>
<td>Primary (CV1)</td>
<td>No</td>
<td>Yes</td>
<td>28/128</td>
<td>Normal</td>
<td>6</td>
</tr>
<tr>
<td>Primary (CV1)</td>
<td>No</td>
<td>Yes</td>
<td>28/128</td>
<td>Reversed</td>
<td>7</td>
</tr>
<tr>
<td>Primary (CV1)</td>
<td>Yes</td>
<td>No</td>
<td>14</td>
<td>Normal</td>
<td>16</td>
</tr>
<tr>
<td>Primary (CV1)</td>
<td>Yes</td>
<td>No</td>
<td>14</td>
<td>Reversed</td>
<td>17</td>
</tr>
<tr>
<td>Primary (CV1)</td>
<td>Yes</td>
<td>No</td>
<td>28/128</td>
<td>Normal</td>
<td>18</td>
</tr>
<tr>
<td>Primary (CV1)</td>
<td>Yes</td>
<td>Yes</td>
<td>14</td>
<td>Reversed</td>
<td>19</td>
</tr>
<tr>
<td>Primary (CV1)</td>
<td>Yes</td>
<td>Yes</td>
<td>14</td>
<td>Normal</td>
<td>20</td>
</tr>
<tr>
<td>Primary (CV1)</td>
<td>Yes</td>
<td>Yes</td>
<td>28/128</td>
<td>Normal</td>
<td>21</td>
</tr>
<tr>
<td>Primary (CV1)</td>
<td>Yes</td>
<td>Yes</td>
<td>28/128</td>
<td>Reversed</td>
<td>22</td>
</tr>
<tr>
<td>Extended (CV17:18)</td>
<td>No</td>
<td>No</td>
<td>14</td>
<td>Normal</td>
<td>32</td>
</tr>
<tr>
<td>Extended (CV17:18)</td>
<td>No</td>
<td>No</td>
<td>14</td>
<td>Reversed</td>
<td>33</td>
</tr>
<tr>
<td>Extended (CV17:18)</td>
<td>No</td>
<td>No</td>
<td>28/128</td>
<td>Normal</td>
<td>34</td>
</tr>
<tr>
<td>Extended (CV17:18)</td>
<td>No</td>
<td>No</td>
<td>28/128</td>
<td>Reversed</td>
<td>35</td>
</tr>
<tr>
<td>Extended (CV17:18)</td>
<td>No</td>
<td>Yes</td>
<td>14</td>
<td>Normal</td>
<td>36</td>
</tr>
<tr>
<td>Extended (CV17:18)</td>
<td>No</td>
<td>Yes</td>
<td>14</td>
<td>Reversed</td>
<td>37</td>
</tr>
<tr>
<td>Extended (CV17:18)</td>
<td>No</td>
<td>Yes</td>
<td>28/128</td>
<td>Normal</td>
<td>38</td>
</tr>
<tr>
<td>Extended (CV17:18)</td>
<td>No</td>
<td>Yes</td>
<td>28/128</td>
<td>Reversed</td>
<td>39</td>
</tr>
<tr>
<td>Extended (CV17:18)</td>
<td>Yes</td>
<td>No</td>
<td>14</td>
<td>Normal</td>
<td>48</td>
</tr>
<tr>
<td>Extended (CV17:18)</td>
<td>Yes</td>
<td>No</td>
<td>14</td>
<td>Reversed</td>
<td>49</td>
</tr>
<tr>
<td>Extended (CV17:18)</td>
<td>Yes</td>
<td>No</td>
<td>28/128</td>
<td>Normal</td>
<td>50</td>
</tr>
<tr>
<td>Extended (CV17:18)</td>
<td>Yes</td>
<td>No</td>
<td>28/128</td>
<td>Reversed</td>
<td>51</td>
</tr>
<tr>
<td>Extended (CV17:18)</td>
<td>Yes</td>
<td>Yes</td>
<td>14</td>
<td>Normal</td>
<td>52</td>
</tr>
<tr>
<td>Extended (CV17:18)</td>
<td>Yes</td>
<td>Yes</td>
<td>14</td>
<td>Reversed</td>
<td>53</td>
</tr>
<tr>
<td>Extended (CV17:18)</td>
<td>Yes</td>
<td>Yes</td>
<td>28/128</td>
<td>Normal</td>
<td>54</td>
</tr>
<tr>
<td>Extended (CV17:18)</td>
<td>Yes</td>
<td>Yes</td>
<td>28/128</td>
<td>Reversed</td>
<td>55</td>
</tr>
</tbody>
</table>
Step 3: Configuring the Throttle

There are seven CVs that characterize the Tsunami’s throttle response and 28 more used to create a custom speed table:

CV 2, V Start
CV 3, Acceleration Rate
CV 4, Braking Rate
CV 25, Speed Table Select
CV 29, Configuration Data
CV 66, Forward Trim
CV 95, Reverse Trim
CV 67-94, User-Loadable Speed Table
CV 118, Motor Recovery Speed

This may sound like a lot of CVs, but don’t worry; it’s not necessary to change all of them if you don’t want to. We’ve already talked about speed step selection in CV 29 (Step 2).

Set the Start Voltage
CV 2 (V Start) sets the starting voltage that is applied to the motor at speed step 1 and is used to compensate for inefficiencies in the locomotive’s motor and driveline. CV 2 may be programmed with any value from 0 to 255, with each step in value being about 0.5% of the maximum available motor voltage. To calculate the value of CV 2, use the following formula:

\[
CV 2 = \frac{Desired \, Starting \, Voltage}{Maximum \, Motor \, Voltage} \times 255
\]

If your DCC system supports Operations Mode programming, an alternative method for setting V Start is to turn your throttle to the first speed step and then use the Operations Mode Programming feature to increase the value in CV 2 until the locomotive just begins to move.

Set the Acceleration and Braking Rates
Tsunami provides two CVs to simulate the momentum due to train weight. CV 3 (Acceleration Rate) controls how fast the locomotive responds to increases in throttle settings. CV 4 (Braking Rate) controls how fast the locomotive will respond to decreases in the throttle setting.

Both CVs can be programmed with any value from 0 to 255, with 255 corresponding to the slowest acceleration or braking rate. Lower settings yield a more responsive locomotive, which is useful for switching. When both CVs are set to 0, the locomotive will respond nearly instantly to any throttle changes. A setting of 255, on the other hand, will require several minutes for a locomotive to reach full speed from a standing stop.
If you are using 14 or 28 speed-step modes, setting CVs 3 and 4 to any value greater than 0 will also improve the Tsunami’s throttle response. While it is accelerating or braking, Tsunami interpolates between speed steps so in effect, your locomotive will respond as if it were being controlled with 128 speed steps. No more sudden lurching from one speed step to another!

Select the Speed Table

Tsunami provides 14 preset and one user-loadable speed table that can be used for several purposes:

1. Matching the Auto-Exhaust rate to locomotive speed
2. Speed-matching one locomotive to another
3. Changing the feel of the throttle. For example, you could configure a switching locomotive so there are more speed steps available at lower speeds for switching, and fewer steps at high speeds where the locomotive is seldom operated.
4. Compensating for an improperly designed driveline so the locomotive will operate within its prototypical speed range

Preset Speed Tables

CV 25, Speed Table Select, is used to select which speed curve will be used by the DSD. CV 25 may be programmed with any value from 2 to 15 to select one of the preset speed curves shown in Table B.

The exact throttle response for each curve is shown graphically. The logarithmic curve provides a rapid throttle response at low speeds, while the exponential curve provides a rapid throttle response at higher speeds.

In order for the speed table selection in CV 25 to take effect, bit 4 of CV 29 must be set to 1. Refer to Configuring the Decoder or the Technical Reference to determine the correct value for CV 29.

<p>| Table B. Speed Table Selection |</p>
<table>
<thead>
<tr>
<th>CV 25</th>
<th>Speed Curve Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Straight Line</td>
</tr>
<tr>
<td>3</td>
<td>Logarithmic Curve 1</td>
</tr>
<tr>
<td>4</td>
<td>Logarithmic Curve 2</td>
</tr>
<tr>
<td>5</td>
<td>Logarithmic Curve 3</td>
</tr>
<tr>
<td>6</td>
<td>Logarithmic Curve 4</td>
</tr>
<tr>
<td>7</td>
<td>Logarithmic Curve 5</td>
</tr>
<tr>
<td>8</td>
<td>Logarithmic Curve 6</td>
</tr>
<tr>
<td>9</td>
<td>Logarithmic Curve 7</td>
</tr>
<tr>
<td>10</td>
<td>Exponential Curve 1</td>
</tr>
<tr>
<td>11</td>
<td>Exponential Curve 2</td>
</tr>
<tr>
<td>12</td>
<td>Exponential Curve 3</td>
</tr>
<tr>
<td>13</td>
<td>Exponential Curve 4</td>
</tr>
<tr>
<td>14</td>
<td>Exponential Curve 5</td>
</tr>
<tr>
<td>15</td>
<td>Exponential Curve 6</td>
</tr>
<tr>
<td>16</td>
<td>User Loadable Speed Table</td>
</tr>
</tbody>
</table>
Set the User-Loadable Speed Curve

The User-Loadable Speed Table allows you to create virtually any throttle response curve you can imagine. You will first need to design and program the User-Loadable Speed Table. The User-Loadable Speed Table consists of 28 data points contained in CVs 67 through 94, each defining the percentage of motor voltage applied at a given speed step. Each data point can contain a value of 0 to 255 corresponding to 0 to 100% of available motor voltage.

In 28 speed-step mode, each data point directly corresponds to a speed step. In 128 speed-step mode, each data point corresponds to every four-and-a-half speed steps. The motor voltage for intermediate steps is interpolated by Tsunami to produce a smooth curve. In 14 speed-step mode, alternate (odd numbered) data points correspond to speed steps 1-14. **Important:** All 28 data points must be programmed even for 14 speed-step mode or an unpredictable throttle response may occur while accelerating or braking.

To create a speed curve, begin by assuming that Tsunami will be operated in 28 speed-step mode. Don’t worry if you are using another mode; Tsunami will automatically take care of the translation between modes.

1. Start by making a table containing 28 entries (one entry for each speed step).
2. For each entry, record the desired throttle response as a percentage of full speed, i.e., 0 to 100%.
3. Compute and record the CV value for each step using the following formula:

 \[
 \text{CV Value} = 255 \times \frac{\text{Percentage of Full Speed (from Step 2)}}{100}
 \]

4. Program CV 67 with the value computed in Step 3 for the first data entry (Speed Step 1).
5. Program CV 68 with the value computed in Step 3 for the second data entry (Speed Step 2).

<table>
<thead>
<tr>
<th>CV#</th>
<th>Speed Step</th>
<th>% Full Speed</th>
<th>CV Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>1</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>68</td>
<td>2</td>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td>69</td>
<td>3</td>
<td>11</td>
<td>27</td>
</tr>
<tr>
<td>70</td>
<td>4</td>
<td>14</td>
<td>36</td>
</tr>
<tr>
<td>71</td>
<td>5</td>
<td>18</td>
<td>45</td>
</tr>
<tr>
<td>72</td>
<td>6</td>
<td>22</td>
<td>55</td>
</tr>
<tr>
<td>73</td>
<td>7</td>
<td>25</td>
<td>64</td>
</tr>
<tr>
<td>74</td>
<td>8</td>
<td>29</td>
<td>73</td>
</tr>
<tr>
<td>75</td>
<td>9</td>
<td>32</td>
<td>82</td>
</tr>
<tr>
<td>76</td>
<td>10</td>
<td>36</td>
<td>91</td>
</tr>
<tr>
<td>77</td>
<td>11</td>
<td>39</td>
<td>100</td>
</tr>
<tr>
<td>78</td>
<td>12</td>
<td>43</td>
<td>109</td>
</tr>
<tr>
<td>79</td>
<td>13</td>
<td>46</td>
<td>118</td>
</tr>
<tr>
<td>80</td>
<td>14</td>
<td>50</td>
<td>127</td>
</tr>
<tr>
<td>81</td>
<td>15</td>
<td>54</td>
<td>137</td>
</tr>
<tr>
<td>82</td>
<td>16</td>
<td>57</td>
<td>146</td>
</tr>
<tr>
<td>83</td>
<td>17</td>
<td>61</td>
<td>155</td>
</tr>
<tr>
<td>84</td>
<td>18</td>
<td>64</td>
<td>164</td>
</tr>
<tr>
<td>85</td>
<td>19</td>
<td>67</td>
<td>173</td>
</tr>
<tr>
<td>86</td>
<td>20</td>
<td>71</td>
<td>182</td>
</tr>
<tr>
<td>87</td>
<td>21</td>
<td>75</td>
<td>191</td>
</tr>
<tr>
<td>88</td>
<td>22</td>
<td>78</td>
<td>200</td>
</tr>
<tr>
<td>89</td>
<td>23</td>
<td>82</td>
<td>209</td>
</tr>
<tr>
<td>90</td>
<td>24</td>
<td>86</td>
<td>219</td>
</tr>
<tr>
<td>91</td>
<td>25</td>
<td>89</td>
<td>228</td>
</tr>
<tr>
<td>92</td>
<td>26</td>
<td>93</td>
<td>237</td>
</tr>
<tr>
<td>93</td>
<td>27</td>
<td>96</td>
<td>246</td>
</tr>
<tr>
<td>94</td>
<td>28</td>
<td>100</td>
<td>255</td>
</tr>
</tbody>
</table>
6. Repeat Step 5 for each of the remaining 26 CVs from CV 69 to CV 94 until they have been programmed with their respective values.

7. Set CV 25 to 16 to select the user-loadable speed table.

8. Set bit 4 of CV 29 to 1 to enable speed table use. Refer to Configuring the Decoder to determine the correct value for CV 29.

Table C may be followed as an example and lists the CV values for a straight-line response.

Adjust the Forward and Reverse Trim

Tsunami provides two CVs for adjusting or ‘trimming’ the forward and reverse speeds:

CV 66, Forward Trim
CV 95, Reverse Trim

These CVs multiply all data points in the speed tables by a factor of n/128 (n is the CV value), allowing the overall speed curve to be adjusted up or down without reloading all 28 data points again. These CVs will not have any effect when the speed tables are disabled (i.e., CV 29, bit 4 = 0)

These CVs may contain any value from 0 to 255. Trim values from 129 to 255 will increase speed curve values between 100% and 200% in approximately 1% steps. Trim values from 1 to 127 will decrease speed curve values between 1% and 99%. A value of 128 yields a scaling factor of 1.0 and has no effect on the speed curve.

Using different values for the forward and reverse trim will yield different forward and reverse speeds.

Adjust the Motor Recovery Speed

CV 118 (Motor Recovery Speed) adjusts the motor response following a momentary power glitch such as might occur when running over a turnout.

If there is a momentary loss in power while the locomotive is under way, Tsunami normally responds by monitoring the DCC signal for the next speed packet and then immediately outputs this value to the motor. In this manner, the locomotive does not come to a complete stop and start accelerating again. Nor does the prime mover sound begin over with the startup sequence as did early generation of decoders; rather it will immediately start playing the engine notch corresponding to the current throttle setting. In general, there will be better continuity of speed and sound when operating on rough track.

However, there may be some unexpected side effects if the inertia effects are enabled through CVs 3 and 4. In such cases, if the throttle is set to a disproportionately high value and the power loss occurs during the acceleration phase, the engine may display a noticeable jump in speed when power returns, as the inertial settings are temporarily bypassed. CV 118 may be used to counter this side effect by limiting how much power is directed to the motor while the inertial effects are bypassed.
Basic Programming

CV 118 has three ranges:

0, 128: When CV 118 is set to 0 or 128, the inertial bypass is disabled. The motor speed and engine sound will always restart at 0 following a power loss.

1-127, Absolute Limiting: When CV 118 is set between 1 and 127, the decoder will simply limit the power applied to the motor following power to the corresponding speed step and then resume acceleration from that point on. For example, let’s assume the throttle is set to speed step 100 and CV 118 is set to 45. Then, when power comes back, the motor speed will instantly go to speed step 45 and then begin accelerating towards speed step 100 per the setting in CV 3.

129-255, Proportional Limiting: When CV 118 is set between 129 and 255, the decoder will simply limit the power applied to the motor following a power loss to a percentage of the current throttle setting and then resume acceleration from that point on. The percentage applied is calculated with the following formula:

\[
\text{Percentage} = \frac{CV_{118} - 128}{127} \times 255
\]

For example, assume the throttle is set to speed step 80 and CV 118 is set to 204 (60%). Then, when the power comes back, the motor speed will instantly go to speed step 48 (60% of 80) and then begin accelerating towards speed step 80 per the setting in CV 3. Similarly, if the throttle were set to 100, the motor speed would start at speed step 60 and increase from there.
Basic Programming

Step 4: Configuring for Consist Operation

Tsunami supports advanced consist operations, which use five related CVs:

- CV 19, Consist Address
- CV 21, Consist Function Control 1
- CV 22, Consist Function Control 2
- CV 23, Consist Acceleration Rate
- CV 24, Consist Braking Rate

Consists Explained

A consist is a group of locomotives that are set up to respond to throttle commands as a single unit. Consists make it easy for one operator to run a double headed steam train or a multi-unit diesel lash-up for example. The consist CVs allow the DSD to recognize a new address assigned to the consist without changing its primary or extended addresses. Additionally, they allow each locomotive in the consist to be run as a single unit but with different function properties allowing for example, only the horn to blow on the lead engine.

Consist Address

Each locomotive in the consist is assigned the same consist address by programming CV 19 with the consist address from 1 to 127. If a locomotive is facing backwards in the consist (common in diesel operations), it should be programmed with the same consist address plus 128. If the forward-facing locomotives are set to consist address 60 for example, the backwards engine must be set to 60 + 128 = 188. Failure to do this will turn the consist into an angry “pushme-pullyou” as all locomotives will try to move forward from the perspective of their own cab and a few pulled couplers might result!

To deactivate the consist address and restore normal operation, CV 19 must be reprogrammed to 0.

Note that when the consist address is set, the DSD will continue to respond to instructions sent to its primary or extended address except for speed and direction data.

The DSD will not respond to Operations Mode programming commands sent to its consist address. These commands must always be used with the primary or extended address.

Consist Function Enable

CV 21 and 22 allow you to define how each engine individually responds to function commands sent to the consist address. When the consist is enabled, CV 21 controls which of functions 1-8 are active and CV 22 controls the F0 function for forward and reverse, as well as functions 9-12.

CVs 21 and 22 take effect only when the consist address is set. When function commands are used with the DSD’s primary or extended address, all functions will continue to work regardless of the settings of CVs 21 and 22.
Basic Programming

Use Table D to calculate the correct value for CV 21, and Table E to calculate the correct value for CV 22. Begin by looking at Table D and determining which functions you want active in the consist and circle the number below it. When you are done, add up all the circled numbers in the row and program the total into CV 21.

<p>| Table D. Consist Function Control 1 |</p>
<table>
<thead>
<tr>
<th>CV#</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
</tr>
</tbody>
</table>

Now look at Table E and do the same: add up all the circled numbers in the row and program CV 22 with the sum.

<p>| Table E. Consist Function Control 2 |</p>
<table>
<thead>
<tr>
<th>CV#</th>
<th>F0(f)</th>
<th>F0(r)</th>
<th>F9</th>
<th>F10</th>
<th>F11</th>
<th>F12</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
</tr>
</tbody>
</table>

Note that each DSD in the consist will require a different set of values for CVs 21 and 22 depending upon your requirements.

Consist Example
Consider a common diesel lash-up consisting of three engines, #4088, #5239 and #6361. Let’s suppose we wish to operate these three engines as a single unit with consist address 40. The dynamic brake (F4) and audio mute (F8) functions should work on all engines. However, we want the headlight (F0(f)), horn (F2) and bell (F1) to only work on the lead unit, #4088, and the backup light (F0(r)) to work only on the trailing unit,#6361. Additionally, the trailing unit is reverse facing.

<table>
<thead>
<tr>
<th>Engine Address</th>
<th>4088</th>
<th>5239</th>
<th>6361</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction</td>
<td>Normal</td>
<td>Normal</td>
<td>Reverse</td>
</tr>
<tr>
<td>CV 19</td>
<td>40</td>
<td>40</td>
<td>168</td>
</tr>
<tr>
<td>CV 21</td>
<td>139</td>
<td>136</td>
<td>136</td>
</tr>
<tr>
<td>CV 22</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Engine 4088
This is the lead engine. Because it is facing forward, CV 19 is simply programmed with 40, the new consist address. Using the Using Table D, we program CV 21 with the sum of the values corresponding to F1, F2, F4 and F8 or $1 + 2 + 8 + 128 = 139$. Likewise, use Table E to determine that CV 22 is programmed to 1, the value corresponding to F0(f).
Basic Programming

Engine 5239
This is the middle engine. Because it is also facing forward, CV 19 is programmed with the new consist address or 40. Using Table D, we program CV 21 with the sum of the values corresponding to F4 and F8 ($8 + 128 = 136$). CV 22 is programmed to 0 since no lights are needed on this engine.

Engine 6361
This is the trailing engine. Because it is facing backwards, CV 19 is programmed with the new consist address, $40 + 128 = 168$. Using Table D, we see must program CV 21 with the sum of the values corresponding to F4 and F8 or $8 + 128 = 136$. CV 22 is programmed to 2, the value corresponding to the backup light, F0(r).

Consist Inertia Control
CVs 23 and 24 can be used to increase or decrease the locomotive’s acceleration and braking responses whenever it is part of a consist (i.e., CV 19 is programmed with a valid address).

CV 23 controls the consist acceleration rate and CV 24 controls the consist braking rate. When the consist address is active a new acceleration rate is calculated by adding the value in CV 23 to the baseline acceleration rate in CV 3. Similarly, a new braking rate is calculated by adding CV 24 to the baseline braking rate in CV 4. When the consist address is set to 0, CV 23 and 24 have no effect.

Both CV 23 and 24 may be set to any value between -127 and +127. A positive value will produce a slower throttle response while a negative value will result in a quicker throttle response.

If the sum of consist and baseline rate exceeds 255, then the final rate is set to the maximum value of 255. If the sum of consist and baseline rate is negative, then the final rate is set to the minimum value of 0.

To set a positive value, simply program the CV with the desired number between 0 and 127. To set a negative value, first change the sign of the value back to positive and then add 128. Thus, to set -5, program the CV with $5 + 128 = 133$. Note that a setting of 128 is the same as 0 and has no effect.
Basic Programming

Step 5: Function Mapping

Function Mapping Explained
Function mapping allows the DSD to be reconfigured so that sound effects and function outputs can respond to a different function key input. This is especially useful for users who have throttles with less than thirteen function keys as now they can pick and choose what effects they can control instead of being restricted to an arbitrary assignment.

There are 14 function mapping CVs - twelve CVs, 35-46 are used to assign output control to function keys 1 through 12 respectively.

The other two CVs, 33 and 34 are both for the F0 function. CV 33 controls which outputs are on when F0 is on and the locomotive is moving forward. CV 34 controls which outputs are on when F0 is on and the locomotive is moving in reverse. If the same output is selected in both CV 33 and CV 34, that function will turn on when the F0 function is on regardless of locomotive direction.

Not all keys can control all outputs or effects. The table below shows which functions can be mapped to which outputs. Note that a function key can be set up to control more than one output.

<table>
<thead>
<tr>
<th>Function Key</th>
<th>Control CV</th>
<th>Headlight</th>
<th>Backup Light</th>
<th>Airhorn</th>
<th>Bell</th>
<th>FX5</th>
<th>FX6</th>
<th>Dynamic Brake</th>
<th>Short Horn</th>
<th>Reserved</th>
<th>Radiator Fans (RPM+)</th>
<th>DIM</th>
<th>MUT</th>
<th>Air Compressor (RPM)</th>
<th>Brake</th>
<th>Coupler</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0 (f)</td>
<td>33</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F0 (r)</td>
<td>34</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>35</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>36</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F4</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F5</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F6</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F7</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F8</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F9</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F10</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F12</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bold Numbers indicate default settings.
An output can be also be controlled by more than one function key. In the second case, if an output is mapped to two function keys, either key will turn that output on, however, the output will not turn off until both function keys have been turned off.

To determine the correct CV value, follow these steps:
1. Find the column in the Function-Mapping Table corresponding to the function or sound effect output you wish to control.
2. Next, locate the row corresponding to the function key you wish to use for controlling the selected output.
3. Note the number located in the box at the intersection of the row and column you have selected.
4. Program the CV listed in the row chosen in Step 2 with the value found in Step 3.

Example: Swapping the Bell and Short Horn Functions

Some DCC systems label Function 3 on their cab as the bell control. However, Tsunami’s default bell control is Function 1. Fortunately, we can use function mapping to re-assign the controls so that the label on the cab matches the utility in the decoder. Since F3 controls the short horn, we will simply swap it with F1 as follows:

Using Table F, we first re-assign Function 3 to the bell. First, find the column corresponding to the bell. Then find the row for Function 3. Note the value, 1, found in the box intersected by the row and column. Finally, program this value into the CV controlling Function 3, in this case CV 37.

Next, re-assign Function 1 to the short horn following the same procedure. Locate the column corresponding to the short horn. Then find the row for Function 1. Note the value, 128, found in the box intersected by the row and column and program this value into CV 35, the CV controlling Function 1.

Working with 8-Function Cabs

While Tsunami can support 12 function keys, many cabs are limited to only 8 or 9 functions and you may feel as though you will lose some ability to enjoy your Tsunami Digital Sound Decoder. Most of the time, some clever function mapping will allow you to access and use all of the available features.

Instant Function Swapping

By setting CV 30 to 4, the function assignments for F5-F8 are instantly swapped with the function assignments for F9-F12. Think of CV 30 as sort of a ‘shift’ key so that when it is set to 4,

<table>
<thead>
<tr>
<th>F5 = Radiator Fans</th>
<th>F9 = FX5</th>
</tr>
</thead>
<tbody>
<tr>
<td>F6 = Air Compressor</td>
<td>F10 = FX6</td>
</tr>
<tr>
<td>F7 = Brake Release/Squeal</td>
<td>F11 = Dimmer</td>
</tr>
<tr>
<td>F8 = Coupler</td>
<td>F12 = Mute</td>
</tr>
</tbody>
</table>
Basic Programming

And when it is set back to 0,

- F5 = FX5
- F6 = FX6
- F7 = Dimmer
- F8 = Mute
- F9 = Radiator Fans
- F10 = Air Compressor
- F11 = Brake Release/Squeal
- F12 = Coupler

If you do not need the mute, dimmer or extra lighting functions, you can set CV 30 to 4 and simply be done with it. Otherwise, programming CV 30 back and forth between 0 and 4 is a little inconvenient and a more sophisticated solution is needed.

A Better Method

In order to more fully utilize the Tsunami with an 8-function cab, it is necessary to free up some function keys by doubling up on some functions and/or turning other functions over to automatic control.

We begin by noting which sound functions may be relegated to automatic control (see page 52 for details):

- Short Horn (F3)
- Brake Squeal (F11)

The radiator fans (F9) and air compressor (F10) may be set to turn on automatically with the prime mover (see page 46).

The Mute function (F8) may be automatically set by way of the Quiet Mode (page 47).

Next, we look to see which outputs could be combined so that they are controlled with a single function. There aren’t too many of these but it might be reasonable to decide to use F0 to turn on all lighting outputs including FX5 and FX6. Or you could use one function to control both FX5 and FX6.

Finally, we could decide that some functions aren’t needed and simply discard them.

We now have seven or so functions that can be juggled about. Since we need to make room for only four, this provides us some flexibility to pick and choose to best meet our requirements.

Example: In this example, we will set up the short horn for automatic signaling so F3 is now available. Let’s presume that FX5 will be used for number board lights and FX6 for a cab light. We can gang up FX5 and FX6 with Function 0 so that these lights are on whenever the headlight or backup light is on, which frees up Functions F5 and F6.

Using Table F, we can proceed to re-map functions as follows. Starting with F0, configure the forward direction to control the headlight, FX5 and FX6:

Set CV 33 = 1 + 16 + 32 = 49
For the reverse direction, set F0 to control the backup light, FX5 and FX6:

\[\text{Set CV 34} = 2 + 16 + 32 = 50 \]

Then configure F3 to control the radiator fan sound:

\[\text{Set CV 37} = 64 \]

Next, we configure F5 and F6 to control the brake squeal and coupler respectively. But wait! Looking at Table F, it appears that this can’t be done. The trick is to use the Instant Function Swapping feature so Function 5 now controls the output assigned to Function 9, Function 6 now controls the output of Function 10, and so forth.

To activate Function Swapping, set CV 30 to 4. Once this is done, the control CVs for a particular function also get swapped so that the function mapping CVs are assigned as follows:

- Function 5 is now mapped with CV 43
- Function 6 is now mapped with CV 44
- Function 7 is now mapped with CV 45
- Function 8 is now mapped with CV 46
- Function 9 is now mapped with CV 39
- Function 10 is now mapped with CV 40
- Function 11 is now mapped with CV 41
- Function 12 is now mapped with CV 42

Now use Table F to remap F5 to control the Brake Squeal:

\[\text{Set CV 43} = 128 \]

Then map F6 to control the coupler:

\[\text{Set CV 44} = 128 \]

We would like to keep the original function assignments for F7 (dimmer) and F8 (mute). By turning on the Function Swapping feature, however, the outputs for these functions are now mapped through CV 45 and 46 which, by default, are set to control some other output. It is necessary to reprogram these CVs as well to get the desired functionality:

- Re-map F7 to control the dimmer:
 \[\text{Set CV 45} = 8 \]

- Re-map F8 to control the mute:
 \[\text{Set CV 45} = 16 \]

Finally, we’ll set the air compressor to run in automatic mode by setting CV 112 to 1.
Basic Programming

Working with 4-Function Cabs
With a 4-function cab (actually in most cases, five functions - F0 plus F1-F4), you will have to give something up! By using Tsunami’s automatic sound controls, hopefully it doesn’t need to be much.

Example: In this example, we will use automatic control for the Short Horn, Mute, Radiator Fans, Air Compressor and Brake Squeal. FX5 and FX6 will be ganged up with F0 as was done for the 8-Function Cab example. F1 and F2 will continue to be used for the Bell and Horn and F4 for the Dynamic Brakes.

This frees up F3, which we can use to control the dimmer. The only effect we must completely give up under this scenario is the coupler sound since it only maps to F10-F12 (or F6-F8 with Function Swapping turned on). Sorry.

Using Table F, we can proceed to re-map functions as follows. Starting with F0, configure the forward direction to control the Headlight, FX5 and FX6:

Set CV 33 = 1 + 16 + 32 = 49

For the reverse direction, set F0 to control the backup light, FX5 and FX6:

Set CV 34 = 2 + 16 + 32 = 50

Then configure F3 to control the dimmer:

Set CV 37 = 128

To activate the automatic horn signal and brake squeal, program CV 198 to 10. To activate auto-mute, program CV 113 to 120 which will shut the sounds off after 30 seconds once the train is brought to a stop and all the functions are turned off (see page 47).

To activate automatic Radiator Fans and Air Compressor, set CV 112 to 3.

You can see that function mapping allows you a great degree of flexibility to solve a variety of problems even if your cab is limited to less than 14 functions.
Step 6: Configuring the Lighting Outputs

Tsunami has up to four function outputs used for controlling the lights.

Each can be set for a variety of effects or as simple on/off lights. In addition, you can use the Grade-Crossing Logic to automatically activate the selected lighting effect when you blow the airhorn.

Tsunami provides six CVs for customizing the lighting effects:

CV 49, Headlight Configuration
CV 50, Backup Light Configuration
CV 51, FX5 Light Configuration
CV 52, FX6 Light Configuration
CV 59, Lighting Effect Flash Rate
CV 60, Grade-Crossing Effect Hold Time

Setting the Hyperlight Effects

Each lighting output has a corresponding CV that determines its operating characteristics.

Hyperlite Select

Each output can be programmed to one of several Hyperlight™ Lighting Effects as listed in Table G. Most effects are self-descriptive and primarily warning beacons used for diesel locomotives. Some effects, such as the Mars Light, were also used in some steam engines.

- **Dimmable Headlight** - The function output is normally an on/off output. If the output is on, the output level will be reduced about 60% whenever the dimmer function is on.
- **Mars Light** - This effect simulates the sweeping figure-8 pattern of this popular warning beacon.
- **Pyle National Gyralite** - The Gyralite is similar to the Mars Light, but generates a slow, wide-sweeping elliptical headlight pattern.
- **Dual Oscillating Headlights** - Similar in appearance to the common twin-sealed-beam headlight, the oscillating headlight uses a moving reflector to sweep the headlight beam in a tight circular motion.
- **Single and Dual Strobes** - The strobe effects simulate the white-hot burst of light associated with the Xenon Strobe.
- **Western-Cullen D312 Rotary Beacon** - This effect provides a spectacular rendition of the revolving reflector and bulb assembly of the prototype warning beacon found atop many diesels of the 60s and 70s.
Prime Stratolite - The Stratolite was a newer version of the rotary beacon, with the prototype consisting of four individual lamps arranged in a circular pattern which are electronically flashed in a clockwise sequence. The Stratolite flashes in a rather mechanical 'stepped' fashion, as opposed to the smooth motion of the Rotary Beacon.

Type I and Type II Ditch Lights - These are identical when operating. However, if the grade crossing logic is enabled, the Type I ditch light will revert to a steady on state when it is not flashing whereas the Type II lights will turn off.

Exhaust Flicker - This effect produces a random flicker whose intensity increases with locomotive speed. This effect is best used by placing a red/orange LED in the exhaust stack. As the locomotive increases speed, it will glow brighter, imitating an increase in sparks and exhaust gases.

Firebox Flicker - This effect produces a random flicker whose intensity resembles a burning fire and can be used with a lamp placed in the firebox area. The effect is improved when two lights are used, one yellow and one red or orange and each connected to a separate function output.

Smart Firebox Flicker (steam only) - This effect produces a random flicker whose intensity is synchronized with the sound of Fireman Fred shoveling coal. Whenever Fred 'opens' the firebox door and begins shoveling, the lighting effect increases in brightness and then returns to a subdued level when the firebox doors are 'closed'.

Dyno-Light - This effect for steam locomotives synchronizes the lamp brightness to the "output" of the dynamo such that the lamp brightness gradually increases as the dynamo builds up speed. For diesel locomotives, the lights will fade on and fade off to simulate the heating and cooling of the bulb filaments.

Phase Select
Phase Select alters the timing of the effect so that it is 180 degrees out of phase with the other effects. This allows you to have two light effects that blink back and forth if desired. Set one effect to phase A and the other to phase B.

Grade-Crossing Logic
Grade-Crossing Logic causes the lighting effect to become active only when the airhorn has been sounded (and the corresponding lighting function key is also on). A typical use would be to cause the ditch lights to flash at a grade crossing. The grade crossing logic can be used with almost all the Hyperlight effects. The on/off, dimmable headlight, Dyno-Light, FRED, exhaust flicker, and firebox flicker effects will not be affected. The other effects will either turn off (strobes and beacons) or revert to a steady on state (Mars light, ditch lights, etc.) as appropriate to prototype practice.
Basic Programming

Rule 17 Headlight Operation
Rule 17 mode converts the headlight and backup light to independent, non-directional functions. When enabled, the headlight is controlled as if it were FX5 (Function 5) and the backup light as FX6 (Function 6).

LED Compensation Mode
Tsunami’s lighting effects can be used with either incandescent bulbs or LEDs. However, because of their differences in brightness characteristics, some lighting effects will appear less life-like when initially set up with an LED. To correct this, Tsunami’s LED Compensation Mode should be enabled, which will improve the contrast of the lighting effect by automatically adjusting the function output level to correct for the LED’s brightness characteristics.

Configuring Hyperlight Control Mode Settings
To set the Hyperlight configuration CVs, proceed as follows:

1. First find the CV value in Table G on the next page for the desired lighting effect and operating mode.
2. If you wish to enable Rule 17 Mode, add 64 to the table value shown, otherwise, proceed to Step 3.
3. If you’re using incandescent bulbs, skip to Step 4. If you are using LEDs, enable LED Compensation Mode by adding 128 to the sum in Step 2.
4. Program the sum computed in Step 3 into the CV corresponding to the appropriate function output. Use CV 49 to set the headlight, CV 50 for the backup light, CV 51 for Function 5, and CV 52 for Function 6.

Setting the Flash Rate and Hold Time
CV 59 is used to adjust the flash rate of the Hyperlight effect and has a range of 0-15 with 15 being the slowest flash rate. When the Grade-Crossing Logic feature is enabled, CV 60 is used to adjust the length of time (in seconds) an effect will remain active after the airhorn key is released. CV 60 can be programmed with any value from 0 to 15.

Example 1, Mars Light with Grade-Crossing Logic
In this example, we will configure the headlight output for use with an incandescent bulb as a Mars light with Grade-Crossing Logic enabled. Following the steps outlined above, we proceed as follows:

1. We first look up the initial CV value in Table G for a Mars light under the column labeled ‘Crossing Logic On’ and find it is 34 for Phase A and 50 for Phase B. Since we are only setting up one light, we do not care about the Phase and choose the value for Phase A, 34.
2. Since we are not using Rule 17, we skip to Step 3.
3. Since we are not using LEDs, we skip to Step 4.
4. CV 49 (Headlight Configuration) is programmed with the value found in Step 1 or 34.
5. Lastly, we need to set the grade-crossing hold time to about 6 seconds by programming CV 60 to 6.
Example 2, Alternating Single-Flash Strobe Lights
In this example, we will configure the FX5 and FX6 outputs as alternating strobe lights as might be found on an Amtrak FP40H:

1. First we look the initial CV value in Table G for a Single-Flash Strobe under the column labeled ‘Crossing Logic Off’ and find the value for Phase A to be 5. To get an alternating effect, the second light must be programmed with the value under Phase B or 21. So for FX5, we will use the Phase A value, 5, and for FX6, we will use the Phase B value, 21.
2. Since we are not using Rule 17, we skip to Step 3.
3. As we are using bulbs, not LEDs, we can skip this step and go to Step 4.
4. Program CV 51 (FX5 Configuration) to 5, the value from Step 1. Similarly, program CV 52 (FX6 Configuration) to 21.

Table G. Hyperlight Control Mode Settings

<table>
<thead>
<tr>
<th>Effect Type</th>
<th>CV Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crossing Logic Off</td>
</tr>
<tr>
<td></td>
<td>Phase A</td>
</tr>
<tr>
<td>On-off</td>
<td>0</td>
</tr>
<tr>
<td>Dimmable</td>
<td>1</td>
</tr>
<tr>
<td>Mars Light</td>
<td>2</td>
</tr>
<tr>
<td>Gyralite</td>
<td>3</td>
</tr>
<tr>
<td>Oscillating Headlight</td>
<td>4</td>
</tr>
<tr>
<td>Single Flash Strobe</td>
<td>5</td>
</tr>
<tr>
<td>Double Flash Strobe</td>
<td>6</td>
</tr>
<tr>
<td>D312 Rotary Beacon</td>
<td>7</td>
</tr>
<tr>
<td>Prime Stratolite</td>
<td>8</td>
</tr>
<tr>
<td>Type I Ditch Light</td>
<td>9</td>
</tr>
<tr>
<td>Type II Ditch Light</td>
<td>10</td>
</tr>
<tr>
<td>FRED</td>
<td>11</td>
</tr>
<tr>
<td>Exhaust Flicker</td>
<td>12</td>
</tr>
<tr>
<td>Firebox Flicker</td>
<td>13</td>
</tr>
<tr>
<td>Smart Firebox Flicker</td>
<td>14</td>
</tr>
<tr>
<td>Dyno-Light</td>
<td>15</td>
</tr>
</tbody>
</table>
Example 3, Alternating Ditch Lights with Grade-Crossing Logic

In this example, we will configure the FX5 and FX6 outputs for use with bulbs as Type I Ditch lights that flash when the horn is blown.

1. We first look up the initial CV value in Table G for a Type I Ditch Light under the column labeled ‘Crossing Logic On’ and find it is 41 for Phase A and 57 for Phase B. To get the lights to flash back and forth, FX5 is set to the Phase A value and FX6 is set to the Phase B value.
2. Since we are not using Rule 17, we skip to Step 3.
3. Since we are using bulbs rather than LEDs, we skip to Step 4.
4. CV 51 (FX5 configuration) is programmed with the value found in step A or 41. CV 52 (FX6 configuration) is likewise programmed with 57.
5. Lastly, we need to set the grade-crossing hold time to about 5 seconds by programming CV 60 to 5.

Initially, the FX5 and FX6 lights should be steady on (Note: Use Function 5 and 6 to turn on FX5 and FX6 first!). When the airhorn is sounded, the two lights will flash back and forth. The lights will revert back to a steady on state after about 5 seconds following the release of the horn key.
Step 7: Modifying the Sound Effects

One of the great things about Tsunami Digital Sound Decoders is the ability to adjust the various sound effects to suit your ear and respond in the manner that you prefer.

Audio Mixer Controls
The Tsunami sound decoder provides up to 25 independent controls for setting the volume levels of each sound effect much like that of a modern sound studio mixing board. To set the sound level for a particular effect, set the corresponding CV to any value between 0 (zero volume) and 255 (maximum volume).

For the best sound quality, you will want to run the mixer as “hot” as possible (audio jargon for maximizing the volume level). First determine which sound you want to be the loudest (usually the airhorn) and set its volume level to around 225. Then adjust all the other sound levels relative to the airhorn volume. Finally, use the Master Volume Control, CV 128, to set the overall volume of the decoder to the desired level.

A certain level of prudence is needed when adjusting the mixer levels to avoid a condition known as ‘clipping’ or ‘limiting’ which occurs when the sum of two or more signals exceeds the capacity of the output channel. As its name implies, clipping results in the lopping off of the sound signal peaks and manifests itself as distortion accompanied with a level of clicking or popping sounds.

To avoid a clipping condition, consider which sounds are likely to be played at the same time and take care to ensure that their corresponding mixer levels are not set too high. For example, the airhorn and exhaust are usually heard together and you will likely want both to be as loud as possible. Rather than simply crank both sounds up to the maximum level, start with one mixer channel near, but not quite at maximum (this provides a little extra ‘headroom’) and then gradually bring up the second mixer channel setting to the desired level. If you start to hear some distortion, simply back down one mixer channel or the other until the distortion goes away.

Your Tsunami sound decoder has a 96dB dynamic range which is plenty for most audio work and as long as you keep the sound levels balanced in a prototypical fashion, you should have no problems.

Note that the Primary Mixer CVs are real time controls, meaning that any changes to their settings will be immediately reflected in the sound level. On the other hand, the Secondary Mixer levels are not real time. If you change their setting while the respective sound effect is playing, you will not hear a change in volume until the sound is turned off and started again.
CV 128, Master Volume Control

Primary Audio Mixer CVs are as follows:
CV 129, Airhorn mixer level
CV 130, Bell mixer level
CV 131, Exhaust mixer level
CV 132, Air Compressor mixer level
CV 133, Dynamic Brake mixer level
CV 134, Radiator Fan mixer level
CV 135, reserved
CV 136, reserved

Secondary Mixer CVs:
CV 137, Coupler Clank mixer level
CV 138, reserved
CV 139, Brake squeal mixer level
CV 140, Brake release mixer level
CV 141, reserved
CV 142, reserved
CV 143, Air Tank Poppet Valve mixer level
CV 144, reserved
CV 145, reserved
CV 146, reserved
CV 147, reserved
CV 148, reserved
CV 149, reserved
CV 150, reserved
CV 151, reserved
CV 152, reserved

Using the Tsunami 7-Band Equalizer
Tsunami’s built-in equalizer (or “EQ” as the audio guys like to call it) is much like that you’d on your home stereo system. The equalizer allows you to selectively cut and boost sound levels by +/-12dB over seven selected frequency ranges and provides the “ultimate” tone control.

When most people hear about Tsunami’s equalizer, their first reaction is “Great, now I can really crank up the bass!” What they don’t realize is that the equalizer is also there to cut out the low frequencies as well.

Every speaker has a limit to the lowest frequency it can efficiently reproduce. This is determined by a number of factors and in particular, the speaker’s physical size. To reproduce a low frequency sound at high volume requires the ability to move a lot of air, and hence a large diameter diaphragm.

On the other hand, the electromagnet at the base of the speaker cone will react just fine to even the deepest bass. So if we try to drive a low frequency sound signal thru a small speaker, the speaker still physically reacts to the signal - we just don’t hear it very well because only a small amount of air is being pushed about. If we turn up the volume, things will not likely improve much and what’s worse, the speaker cone will eventually be pushed against its physical travel limits resulting in annoying clicking and popping sounds.
This is where the equalizer’s ability to “cut” frequencies out becomes important. By removing the inaudible low frequency sound components, the speaker is now able to work more efficiently (i.e. louder) in the audio range it was designed for.

EQ Presets
Using the equalizer begins with CV 153, the EQ Control Register. This CV may be programmed with any value between 0 and 7. A setting of 0 disables the EQ as if it were never there. Settings 1 thru 6 select a factory preset which tailors the frequency response to several of SoundTraxx’s more popular on-board speakers. The table below shows the presets and their equivalent settings which may be used as the basis for developing your own settings.

<table>
<thead>
<tr>
<th>Preset No.</th>
<th>Description</th>
<th>62Hz</th>
<th>125Hz</th>
<th>250Hz</th>
<th>500Hz</th>
<th>1Hz</th>
<th>2Hz</th>
<th>4Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Flat</td>
<td>0 dB</td>
</tr>
<tr>
<td>1</td>
<td>Micro Speaker < 1” Diameter</td>
<td>-12 dB</td>
<td>0 dB</td>
<td>0 dB</td>
<td>+1.5 dB</td>
<td>140</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>2</td>
<td>Small Speaker 1-2” Diameter</td>
<td>-6 dB</td>
<td>-3 dB</td>
<td>0 dB</td>
<td>+1.1 dB</td>
<td>136</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>3</td>
<td>Medium Speaker 3-4” Diameter</td>
<td>-3 dB</td>
<td>+4.1 dB</td>
<td>148</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
</tr>
<tr>
<td>4</td>
<td>Large Speaker >4” Diameter</td>
<td>+6 dB</td>
<td>+3 dB</td>
<td>+1.5 dB</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
</tr>
<tr>
<td>5</td>
<td>Edgeport Speaker</td>
<td>-12 dB</td>
<td>0 dB</td>
<td>0 dB</td>
<td>-3 dB</td>
<td>96</td>
<td>64</td>
<td>84</td>
</tr>
<tr>
<td>6</td>
<td>Micro Speaker < 1” Diameter</td>
<td>+6 dB</td>
<td>+3 dB</td>
<td>+1.2 dB</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
</tr>
<tr>
<td>7</td>
<td>User Customizable</td>
<td>CV 154</td>
<td>CV 155</td>
<td>CV 156</td>
<td>CV 157</td>
<td>CV 158</td>
<td>CV 159</td>
<td>CV 160</td>
</tr>
</tbody>
</table>

Custom EQ Settings
Finally, a setting of 7 allows you to customize the EQ response using CVs 154 thru 160, each which controls a different frequency band as follows:

<table>
<thead>
<tr>
<th>CV Value</th>
<th>dB Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>255</td>
<td>+12 dB</td>
</tr>
<tr>
<td>224</td>
<td>+9 dB</td>
</tr>
<tr>
<td>192</td>
<td>+6 dB</td>
</tr>
<tr>
<td>160</td>
<td>+3 dB</td>
</tr>
<tr>
<td>128</td>
<td>0 dB</td>
</tr>
<tr>
<td>96</td>
<td>-3 dB</td>
</tr>
<tr>
<td>64</td>
<td>-6 dB</td>
</tr>
<tr>
<td>32</td>
<td>-9 dB</td>
</tr>
<tr>
<td>0</td>
<td>-12 dB</td>
</tr>
</tbody>
</table>

Think of these CVs as slider control like those you might find on the front of an equalizer for your home stereo. Each CV may be programmed between 0 and 255. A value of 0 corresponds to full cut or -12dB*. A value of 128 corresponds to moving the slider to the middle or 0dB (no effect) and a value of 255 corresponds to full boost or +12dB. Table I shows CV settings for common boost/cut levels.
The graph below depicts the minimum and maximum frequency response for each of the seven CVs. Note that there is some overlap so adjusting one CV will raise or lower sounds with nearby frequencies as well.

The easiest way to set the EQ is to simply use your ears and adjust the CV settings while the sounds are playing. Starting with the lowest frequency band, adjust CV 154 up or down until you get the desired response. Then adjust the next band using CV 155 and so forth. Depending on the speaker you have installed, you may find that the lowest frequency bands have or no little effect. In this case, the audio frequencies are out of the speaker’s reproduction range and we suggest you set the corresponding CV to 0 (i.e., full cut).

*For those not familiar with dB, it stands for decibel. Every +6dB change represents a doubling in the audio signal while a -6dB change is the same as cutting it in half. Thus a +12dB increase quadruples the signal level and -12dB cuts it in fourth.
Reverb

The Reverb Module allows you to add a bit of reverb (not echo!) and presence to Tsunami’s sound effects. Be forewarned -- unless you are a trained audio technician, adjusting the reverb effects may result in some strange or unpleasant sounds. Take your time and experiment cautiously.

There are eight CVs associated with the Reverb Module:

- CV 161, Reverb Control Register
- CV 162, Reverb Output Level
- CV 163, Reverb Delay Time
- CV 164, Reverb Feedback Level
- CV 169, Mixer Ch 0 Reverb Send Level
- CV 170, Mixer Ch 1 Reverb Send Level
- CV 171, Mixer Ch 2 Reverb Send Level
- CV 172, Mixer Ch 3 Reverb Send Level

Reverb Control Register

CV 161 is the Reverb Control Register which allows you to select one of several Reverb Presets or to choose the User-Adjustable Reverb.

The presets contain predetermined values for the Reverb Output Level, Reverb Delay, Reverb Feedback Gain level, and Reverb Send Levels. Table J lists the available presets and the corresponding value for CV 161.

User-Adjustable Reverb

The reverb works by simulating the effect created when a sound wave is heard along with a delayed version of the sound that has been reflected off of some other hard surface. Tsunami’s reverb is designed to produce a reverb effect due to early sound reflections off a nearby surface such as a rock cut or a canyon wall.

The User-Adjustable Reverb provides three controls plus an input mixer (described in the next section). The Reverb Controls are as follows:

- CV 162, Reverb Output Level
 This CV determines the amount of reverb signal that is mixed back with the original audio signal. CV 162 may be set to any value from 0 (minimum) to 255 (maximum).
CV 163, Reverb Delay Time
This CV sets the overall Reverb Delay time from 0 to 64 milliseconds. CV 163 may be set anywhere from 0 (zero delay) to 255 (maximum delay) and the corresponding delay time may be calculated as:

\[\text{Delay time} = \text{CV 163} \times 0.25\text{mS} \]

A longer delay time corresponds to a greater distance between the sound source and the reflecting surfaces and will generally result in an increased level of reverb.

CV 164, Reverb Feedback Level
This CV specifies the percentage of the Reverb’s output that is mixed back into its input and creates the effect of multiple sound reflections each diminishing in amplitude over time. CV 164 may be set to any value between 0 and 255 where 0 = no feedback and 255 = 100% feedback.

Caution: High feedback settings (> 200) should be avoided as they can result in very high audio levels and can potentially damage miniature speakers. Adjust this CV starting with a low initial value and increase in small steps.

Reverb Mixer
The Reverb Mixer allows you to apply the reverb effect to only the desired sound effect or effects. There are four reverb inputs each with a corresponding Reverb Send Level CV that controls the percentage of the original audio level that is to be mixed into the reverb. Each send level may be set between 0 and 255 where 0 = minimum level (0%) and 255 = maximum level (100%).

The Reverb Send Levels are each pre-assigned to the first four channels of the primary mixer channel as follows:

- CV 169, Airhorn Reverb Send Level
- CV 170, Bell Reverb Send Level
- CV 171, Exhaust Reverb Send Level
- CV 172, Air Compressor Reverb Send Level

The Reverb is most effectively used with the airhorn and exhaust sound effects. Some horns have a certain amount of reverb intrinsically built in as part of the original recording and may not noticeably respond to any additional reverb added.
Setting Up the Reverb

Setting up the reverb involves a bit of trial and error and is best done while the sounds are playing using operations mode programming to make the adjustments.

Start by Setting CV 161 to 7 to enable the user-adjustable reverb.

Next, set the Reverb Output Level (CV 162), Reverb Delay Time (CV 163), and Reverb Feedback Level (CV 164) to some nominal initial value. We like to start with the default settings of 128 for CV 162, 255 for CV 163 and 64 for CV 164.

Then determine which sounds you wish to apply the reverb to and set the corresponding Reverb Mixer Send Level CV to some nominal value between 50% to 75% of the original signal (corresponding to a CV setting between 128 and 192). If you are using multiple reverb inputs, each can be set to a different value so that more or less reverb is added to a particular sound effect as desired.

With the default reverb control settings, you should notice a definite amount of reverb added to the sound and can begin making adjustments.

Adjusting CV 162 will vary the amount of reverb’s output signal that is mixed back with the original signal. Remember, in real life, the reflected signals that create the reverberation are usually lower in volume than the original signal so generally, you will want just enough output to notice the effect but not so much as to overwhelm the original signal.

Adjusting CV 163 will vary the delay time corresponding approximately to the extra distance a reflected sound wave needs to travel in order to reach the listener. Thus, the further away a reflecting surface is from the listener, the longer the delay time becomes.

Adjusting CV 164 simulates the effect of multiple sound reflections taking place. When set to 0, only one reflection occurs and this does not make for a very interesting effect (Ordinarily, we would call this an echo but the maximum delay time for Tsunami’s reverb is not long enough for such an effect as might be heard across a mountain range for example.) Increasing CV 164 increases the number of reflections and adds a certain ‘springiness’ to the sound.

Like any sound effect, it is possible to over-adjust a particular setting and create an artificial and unnatural sound. Make adjustments in small steps and let your ears be the judge!
Airhorn Selection and Control
Tsunami uses three CVs to adjust and control the airhorn:

CV 115, Airhorn Select
CV 129, Airhorn Volume
CV 47, Playable Airhorn Control

As set from the factory, Tsunami uses Function F2 to control the primary airhorn and Function F3 to control a shorter signal airhorn. Each Tsunami decoder comes with up to 16* airhorns pre-installed. To select a particular airhorn, simply program CV 115 with any value between 0 and 15 as indicated in Table K. Refer to the product packaging or the SoundTraxx website for a detailed list of which airhorns are contained in your particular decoder.

Note: Depending on the prototype and available memory storage, some Tsunamis may have less than 16 airhorns installed. In such cases, selecting an unavailable airhorn will default to Airhorn 0.

Table K. CV 115, Airhorn Selection

<table>
<thead>
<tr>
<th>Airhorn Number</th>
<th>CV Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airhorn 1</td>
<td>0</td>
</tr>
<tr>
<td>Airhorn 2</td>
<td>1</td>
</tr>
<tr>
<td>Airhorn 3</td>
<td>2</td>
</tr>
<tr>
<td>Airhorn 4</td>
<td>3</td>
</tr>
<tr>
<td>Airhorn 5</td>
<td>4</td>
</tr>
<tr>
<td>Airhorn 6</td>
<td>5</td>
</tr>
<tr>
<td>Airhorn 7</td>
<td>6</td>
</tr>
<tr>
<td>Airhorn 8</td>
<td>7</td>
</tr>
<tr>
<td>Airhorn 9</td>
<td>8</td>
</tr>
<tr>
<td>Airhorn 10</td>
<td>9</td>
</tr>
<tr>
<td>Airhorn 11</td>
<td>10</td>
</tr>
<tr>
<td>Airhorn 12</td>
<td>11</td>
</tr>
<tr>
<td>Airhorn 13</td>
<td>12</td>
</tr>
<tr>
<td>Airhorn 14</td>
<td>13</td>
</tr>
<tr>
<td>Airhorn 15</td>
<td>14</td>
</tr>
<tr>
<td>Airhorn 16</td>
<td>15</td>
</tr>
</tbody>
</table>

Airhorn Volume
CV 129 sets the airhorn volume and may be set from 0 to 255. See Audio Mixer for more details.

Dual Airhorn Mode
On occasion, a locomotive was equipped with two different airhorns. Tsunami has the ability to select between two different airhorns, if desired, using the Dual Airhorn Mode feature. When this mode is enabled, Function F2 continues to work as the primary airhorn control. Function F3 becomes the airhorn select key. When F3 is OFF, F2 controls Airhorn Selection A and when F3 is ON, F2 controls Airhorn Selection B. Note that when the dual airhorn mode is enabled, the signal (short) airhorn is unavailable.

To activate the dual airhorn mode, program CV 115 as follows:

1. Select Airhorn ‘A’ and find the corresponding CV value from Table K.
2. Select Airhorn ‘B’ and find the corresponding CV value from Table K.
 Note: For Airhorn B, you must select from airhorn 2 through 16.
3. Multiply the CV value for Airhorn B by 16 and add it to the value for Airhorn A.
Example
Let’s set up the Tsunami EMD 567 Decoder with a Wabco E2 on airhorn ‘A’ and a Hancock Air Whistle on ‘B’.

1. As noted on the product packaging, the Wabco E2 is Airhorn 1. From Table K, this is selected with a CV setting of 1.
2. Similarly, the Air Whistle is Airhorn 16 and from Table K, this is selected with a CV setting of 15.
3. The CV value from step 2 is multiplied by 16 and added to the CV value from step 1 to get:

 $$241 = (15 \times 16) + 1$$

4. This value is then programmed into CV 115:

 $$CV \ 115 = 241$$

Playable Airhorn
Tsunami has a unique feature called a Playable Airhorn which allows you to set the airhorn for a pressure or position response to an analog control. This could be a pressure-sensitive key, thumbwheel or some other analog control, depending on your command station.

In some cases, each cab must be individually set up to use this feature; you will need to see the documentation that came with your command station for this information, as well as the value to program into CV 47. The default value for CV 47 is 0, which disables the playable airhorn function.

Hint: the effect of the playable airhorn is greatly enhanced if you enable the Airhorn Reverb by setting CV 161 to 1.

Note: Once you’ve programmed the decoder to respond to the playable airhorn function, if you switch to different cab not programmed in this manner you will find that F2 and F3 will no longer respond.
Bell Control
By default, Tsunami uses Function F1 to turn the bell on and off. There are two CVs to adjust the bell:

CV 114, Bell Ring Rate
CV 130, Bell Volume

Bell Ring Rate
The bell ring rate may be adjusted over 16 steps to simulate the sound of an air-rung bell or a hand-rung bell by setting CV 114 between 0 and 15. A setting of 0 yields the fastest ring rate (like an air-ringer) while higher values produce increasingly slower ring rates. The default setting for CV 114 is four, but as each Tsunami decoder features a different bell recording you may find that tweaking this value a bit improves the overall sound effect on some models.

Bell Volume
CV 139 sets the bell volume and may be set between 0 and 255. See Audio Mixer for more details.

Diesel Engine Control
Tsunami provides two CVs for setting up the diesel engine sound effect:

CV 116, Engine Control
CV 131, Exhaust Volume

Engine Control: Automatic Notching
Setting CV 116 between 1 and 15 enables Automatic Engine Notching Mode. Automatic notching causes the engine RPMs to change in proportion to the throttle setting. Pressing Emergency Stop will cause the engine to shut down.

The value in CV 116 sets the number of speed steps per engine notch. With a setting of one, the engine speed will increase one notch for each speed step. When the engine sound reaches notch 8, no further increases will take place. With a setting of seven (default), the engine speed will increase one notch for every seven speed-steps and the engine will reach full power at speed step 48.

By varying CV 116, the sensitivity of the engine sound to the throttle is changed. If you operate on a small layout or are having trouble keeping the engine sound synchronized to the locomotive speed, you might want to use larger CV values (12-15) to keep the engine from becoming 'over-throttled'.
Engine Control: Manual Notching
As the name implies, Manual Notching allows you to control the engine RPMs manually and independently of the throttle setting. Manual Notching allows for more prototypical operating scenarios such as having a heavy train slowly climb a grade while the engines are laboring at full power.

To use Manual Notching, set CV 116 to 0. Then, the engine RPMs will increase by one notch each time Function 9 is pressed. Similarly, the RPMs can be decreased by one notch each time Function 10 is pressed. Unlike Automatic Notching, pressing Emergency Stop will reduce the engine speed to idle. Once the engine is idling, you can shut it off by pressing Function 10.

When Manual Engine Notching is selected, both the radiator fans and air compressor sound effects will no longer be controlled by F9 and F10. Instead, they can be configured to turn on automatically whenever the engine sound is playing with CV 112 (see Radiator Fans and Air Compressor Control).

Engine Interlock
The Engine Interlock feature is designed to work with Manual Notching and helps avoid embarrassing moments like accidentally shutting off your prime mover while cresting a grade!

When enabled, the Engine Interlock prevents the diesel engine from being shut off unless the locomotive is stopped. Similarly, the locomotive will not respond to the throttle until the diesel engine has first been started up.

To enable the Engine Interlock, program CV 116 to 16.

Engine Exhaust Volume
CV 131 sets the diesel exhaust volume and may be set between 0 and 255. See Audio Mixer for more details.

Engine Auto-Start
When active, the Auto-Start feature starts up the prime mover sound automatically whenever the decoder is powered up regardless of whether or not it is addressed by the user. In this manner, the locomotive will begin producing sound without any user intervention.

To use the Auto-Start feature, first determine the baseline value for CV 116 based on your choice of manual (setting of 0 or 16) or automatic engine notching (settings 1 through 15). Then to enable auto-start, add 32 to the setting in CV 116.

Example: We want to use automatic notching with a one notch increase for every eight speed steps. From the section under ‘Engine Control’, we determine the base setting for CV 116 to be 8. Then to enable Auto-Start, we add 32. Thus, CV 116 is set to:

\[\text{CV 116} = 8 + 32 = 40 \]
Dynamic Brakes
Tsunami provides two CVs for setting up the dynamic brake sound effect:

CV 116, Engine Control
CV 133, Dynamic Brake Volume

Dynamic Brake Override Control
While the Dynamic Brakes are applied, prototype practice usually requires the diesel engine speed to be lowered to an idle. Some railroads modified their locomotives so the engine was set to mid-speed (notch 4) when the dynamic brakes were on. This was to provide increased power to the cooling fans. A few locomotives have also been reported to run at full power whenever the dynamic brakes are on.

The Tsunami allows you to replicate this with its Dynamic Brake Override feature. When enabled, turning on the Dynamic Brake function (F4) will cause the diesel RPMs to change automatically as the dynamics “engage”. When the Dynamic Brakes are turned off, the engine will return to its previous speed.

To activate the Dynamic Brake Override, first determine a baseline setting for CV 116 based on the Engine Control mode you plan to use (see previous section). Then refer to Table L and add the indicated value to CV 116.

Example
We want to use automatic notching with one notch every seven speeds. From the section under “Engine Control”, we determine the setting for CV 116 to be 7. We want to use the Dynamic Brake Override so the engine drops to an idle (notch 1) whenever the dynamics are on. From the table, we get a value of 64 and add this to 7. Thus, CV 116 is set to:

\[CV \, 116 = 7 + 64 = 71 \]

Dynamic Brake Volume
CV 133 sets the dynamic brake volume and may be set between 0 and 255 as discussed under Audio Mixer.

<table>
<thead>
<tr>
<th>Override Mode</th>
<th>CV 116 Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disabled</td>
<td>Add 0</td>
</tr>
<tr>
<td>Engine Speed = Notch 1</td>
<td>Add 64</td>
</tr>
<tr>
<td>Engine Speed = Notch 4</td>
<td>Add 128</td>
</tr>
<tr>
<td>Engine Speed = Notch 8</td>
<td>Add 192</td>
</tr>
</tbody>
</table>

Table L. Dynamic Brake Override Control
Radiator Fan and Air Compressor Control

Three CVs are used for controlling the radiator fan and air compressor sound effects:

- CV 112, Sound Configuration #1
- CV 132, Air Compressor Volume
- CV 134, Radiator Fan Volume

Automatic Control

Both the Radiator Fans and Air Compressor sound effects may be set for manual or automatic control. When manual control is selected, Functions 9 and 10 may be used to turn the Fans and Compressor on and off respectively.

When Automatic mode is selected, the effects will turn on automatically. This is useful when using manual engine notching or operating cabs with a limited number of functions and technically, is more prototypical.

In either mode, the engine sound must be running before the fan or compressor sound will turn on.

Once you have decided whether to use automatic or manual control, refer to Table M to select the proper value to program into CV 112.

<table>
<thead>
<tr>
<th>Radiator Fans</th>
<th>Air Compressor</th>
<th>CV Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>F9</td>
<td>F10</td>
<td>0</td>
</tr>
<tr>
<td>F9</td>
<td>Auto</td>
<td>1</td>
</tr>
<tr>
<td>Auto</td>
<td>F10</td>
<td>2</td>
</tr>
<tr>
<td>Auto</td>
<td>Auto</td>
<td>3</td>
</tr>
</tbody>
</table>

Air Compressor Volume

CV 132 sets the Air Compressor volume and may be set between 0 and 255. See Audio Mixer for more details.

Radiator Fan Volume

CV 134 sets the Radiator Fan sound volume and may be set between 0 and 255 as discussed under Audio Mixer.
Using the Quiet Mode

Tsunami's Quiet Mode is used to turn the sound on only after the decoder is placed into service. It will also automatically turn the sound effects off when the decoder is not being used. This is particularly useful when you have a large number of sound equipped engines on your layout and don't wish to have them turn all at once!

To activate the Quiet Mode, simply program CV 113 to any non-zero value between 1 and 255. This value sets the amount of time in tenth second increments, that the decoder will wait before it turns the audio off. Thus, a setting of 120 corresponds to 12.0 seconds.

When the Quiet Mode is active, the decoder will remain quiet when it is first powered up and then automatically turn on the audio whenever it receives a non-zero speed command or any function is turned on (except Mute). It will automatically mute the audio when the locomotive speed is returned to zero, all functions are turned off and the time set in CV 113 has elapsed.

Setting CV 113 to 0 disables this feature and the sounds will turn on immediately when the decoder is powered up and remain turned on for the duration of the operating session.
Step 8: Setting Up the Hyperdrive

Tsunami’s Hyperdrive system features high-frequency PWM drive for silent motor control along with load compensation (or back-EMF) to improve low speed operation and maintain constant speed regardless of changes to the motor load.

The PWM frequency is fixed at 22.000kHz and there are no adjustments.

Tsunami uses back-EMF and a PI control loop to sense and control motor speed. There are four CVs associated with the load compensation feature:

- CV 10, Back-EMF Cutout
- CV 209, Kp Coefficient
- CV 210, Ki Coefficient
- CV 212, Back-EMF Feedback Intensity

Control Loop Coefficients

Tsunami compensates for load changes by comparing the locomotive’s speed, as measured by the motor’s back-EMF voltage, with the current throttle setting. When a difference is detected, the motor voltage is adjusted up or down so that locomotive speed stays constant. This is done using a P-I (proportional-integral) control loop that is tuned using two CVs:

- **CV 209, Kp**: Controls the proportional gain of the control loop and compensates for dynamic changes in the motor load by applying a correction based on the difference between the throttle setting and the current motor speed. This CV may be set between 1 and 255. Higher values produce an increasing level of compensation. However, setting this value too high can lead to irregular and rough performance.

- **CV 210, Ki**: Controls the Integral gain of the control loop and compensates for static motor load by applying a correction based on the historical (or integral) difference between the throttle setting and the current motor speed. This CV may be set between 0 and 255. Higher values produce an increasing level of compensation and set the ’snappiness’ of the control loop. However, setting this CV value too high can lead to oscillations in locomotive speed and we suggest you use the lowest possible setting that still provides optimal performance.

Note: Setting both Kp and Ki to zero will cause the motor to stop.
Strategy for CV Optimization

Finding the right combination of CV settings requires a certain amount of experimentation and patience to get the best performance. Be aware that these settings will also vary from one locomotive to another. Take notes of your CV settings so you can use them as starting points when configuring other locomotives.

Overdoing a particular setting can actually degrade performance so changes should be made in small increments (+/- 10 or so) until the desired performance is attained. The default settings should provide satisfactory performance when used with most HO and N scale motors.

We suggest the following procedure to help fine tune the CV settings:

1. Begin with each CV set to its default value: CV 10 = 0, CV 209 = 25, CV 210 = 20, and CV 212 = 255. In addition, set CV 2 (Vstart) to 0.
2. With the locomotive on level track, set the throttle to speed step 20.
3. Adjust the value in CV 209 (Kp) with increasingly higher values just until you begin to notice some jerkiness in the locomotive speed. Reduce the setting in CV 209 to the value just before the jerkiness started.
4. Adjust the value in CV 210 (Ki) with increasingly higher values until you begin to notice some oscillation in the locomotive speed whenever the throttle setting is changed. Reduce the setting in CV 210 to the value just before the oscillation started.

Note: When using load compensation, it is unnecessary to set large values into CV 2 (Start Voltage). This is because the load compensation algorithm will automatically adjust the motor power up to reach desired throttle setting. Therefore CV 2 can usually be set to 0 when load compensation is enabled.

Setting the Load Compensation Curve

Tsunami provides two degrees of freedom for controlling the amount of load compensation applied to the motor over the throttle range using CV 10, Back-EMF Cutout and CV 212, Back-EMF Feedback Intensity.

CV 212 sets the amount of load compensation that is initially applied to the motor and may be set anywhere between 0 and 255. A value of 0 disables load compensation altogether while a value of 255 corresponds to full (100%) compensation.

CV 10, Back-EMF Cutout, determines the degree by which the load compensation is reduced as the throttle speed is increased.

When CV 10 is set to 0, the amount of load compensation set by CV 212 is constant over the entire speed range. Setting CV 10 between 1 and 127 will determine the speed step at which the load compensation is reduced to zero as illustrated in the graph on the next page.
Setting CV 10 between 128 and 255 selects a partial reduction of load compensation at full speed such that the minimum load compensation level at speed step 128 is:

\[
\text{Full Speed Load Compensation} = \frac{(CV\ 10 - 128)}{128}
\]

In general, you will want full load compensation at low speeds which gradually reduces to zero load compensation at full throttle and may be achieved by setting CV 10 to 126.

When operating in a consist, you may need to reduce the value in CV 212 which will reduce the low speed load compensation and avoid working the locomotives against each other due to slightly different running characteristics.
Step 9: Floobydust - Configuring Tsunami's Miscellaneous Features

F11 Train Brake
By now you've no doubt discovered that Function F11 can be used to turn Tsunami's brake squeal sound on and off. What you may not realize is that F11 can also be used to slow your train down as if the brakes really are applied without having to adjust the throttle.

To achieve this effect, you will need to first program some momentum into Tsunami using CVs 3 and 4 to set the acceleration and braking rates respectively. The exact value is unimportant but should be large enough to produce a noticeable delay in the throttle response. A setting of 20 or so will do the trick. The reason for programming CV 3 (acceleration rate) is so the train does not immediately resume its old speed when the F11 function is released.

Next, program CV 61 (F11 Brake Rate) to adjust the rate at which the train will slow down when F11 is turned on. The value in CV 61 works in conjunction with the deceleration rate set in CV 4 by adding a value of 1 to 128 to the value programmed in CV 4, which has the effect of slowing the train more gradually than by simply turning the throttle down. Values of 129 thru 255 translate to -1 thru -127 which have the opposite effect as they subtracted from the setting in CV 4 and slow the train more aggressively than turning the throttle down (as a brake would be expected to do).

Be careful not to set F11 too high -- if you do, the net braking rate will be 0 and you will have effectively turned F11 into an emergency stop button!

Note that setting CV 61 to a value of 0 or 128 has no effect on the brake rate and basically disables this feature.

DC Braking
The DC Braking feature allows you to configure Tsunami to bring the locomotive to a gentle stop whenever DC power is present on the track. In this manner you can implement an inexpensive ‘braking section’ for stopping locomotives in front of a red block signal. This is done by using a relay or other switch to supply a section of track ahead of the signal with DC when the signal is red and DCC power when the signal is green. Then, configure Tsunami decoder as follows:

1. Set CV 11, Packet Timeout Value. CV 11 determines the amount of time, in 0.25 second increments, that elapses between when Tsunami first detects the loss of the DCC control signal and when it begins to bring the locomotive to a stop. For DC Braking, we suggest using a small value of 1 or 2 corresponding to a detection time of a 1/4 to 1/2 second.
2. Set CV 3 (Acceleration Rate) and CV 4 (Braking Rate). Since you won’t want your train to come to a sudden stop, you’ll need to set these CVs so
your train slows down and starts up smoothly. Be sure to pick a braking rate value that's high enough to bring the train to a smooth stop but not so large that it over runs the length of the braking section and starts up again! See Step 3, 'Configuring the Throttle', for more information.

3. Disable Analog Mode. This prevents Tsunami from taking off at full speed when it encounters DC power. Analog mode can be disabled two ways. Program CV 12 (Alternate Power Mode) to 0 or select a proper value for CV 29 where Analog Mode is off. See Step 2 and Table A for selecting the proper value for CV 29.

Now, whenever Tsunami encounters a DC powered section of track it will slow to a stop and wait. Lighting and sound functions will remain on as they where prior to entering the braking section. When DCC power is restored, the decoder will accelerate back to its current throttle setting.

Automatic Sound Functions

Tsunami provides the ability to generate several sound functions automatically. This is especially useful when your controller lacks a sufficient number of function keys to control all of Tsunami's sound effects or when using Tsunami on a (DC powered) where there are no function controls at all.

There are six CVs associated with the Automatic Sound Functions:

- CV 193, Automatic Bell On Set Point
- CV 194, Automatic Bell Off Set Point
- CV 195, Grade Crossing Airhorn Sensitivity
- CV 196, Brake Squeal Sensitivity
- CV 197, Analog Mode Automatic Sound Configuration
- CV 198, Digital Mode Automatic Sound Configuration

Automatic Sound Configuration Register

CV 197 selects which automatic sound functions are enabled when the decoder is operating in analog or DC mode. CV 198 similarly configures the automated sound functions for DCC operation.

There are five automated sound functions available:

Automatic Airhorn Signals: Whenever the locomotive is stopped or started, Tsunami will produce the correct airhorn signal appropriate for the direction of travel:

- One Short Toot = Stop
- Two Medium Toots = Forward
- Three Short Toots = Reverse

Automatic Grade-Crossing Signal: When enabled, Tsunami will play a grade crossing signal (two long airhorn blasts followed by a short and another long) triggered by a sudden upward spike in the throttle.

Automatic Bell: Tsunami can be programmed to turn the bell on and off at preset speed points such as might occur when passing through a yard or station platform.
These functions may be enabled by referring to Table N below and circling the numbers corresponding to the sound function you want to enable. Then add up the circled numbers and program this value into CV 197 (analog mode) and or CV 198 (DCC mode). You can configure Tsunami so some or all automated sounds work in one mode and not the other in any combination as needed.

<table>
<thead>
<tr>
<th>Table N. Automatic Sound Function Enable</th>
<th>CV 197 (Analog Mode) or CV 198 (DCC Mode) Suggested Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Brake Squeal</td>
<td>Automatic Bell Enable</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

Then go on to set CVs 193-196 to fine-tune the operation of each enabled function.

Automatic Bell Set Points

CVs 193 and 194 determine the speed steps (or equivalent throttle voltages when operating in analog mode) at which the automatic bell turns on and off respectively and may be set anywhere between 1 and 126 corresponding to the speed step of the same value. CV 194, the bell off set point, must be set to a value greater than CV 193 or else the bell will not turn on.

Example: Set CV 193 to 5 and CV 194 to 10. With these settings the bell will initially be off when the engine is stopped. As the locomotive speed is increased, the bell will turn on once the throttle setting reaches speed step 5. The bell will remain on so long as the engine is operated between speed steps 5 and 10. Increasing the throttle beyond speed step 10 or below speed step 5 will turn the bell back off. Once the bell has been turned off, it can be turned back on by lowering the speed to the same setting as in CV 193.

Grade-Crossing Airhorn Sensitivity

The automatic grade-crossing airhorn is activated whenever Tsunami senses a sudden increase in the throttle setting (or track voltage in analog mode) as set by the value in CV 195. This CV can be set to any value from 0 to 126 but for practical purposes, you will likely want a value from 3 to 10. Too low a setting will result in the airhorn going off at every speed increase and too high a setting will require an extreme change in the throttle to trigger the sound.

A CV setting of 5, for example, requires you to quickly increase the throttle by at least five speed steps before the airhorn will sound off.

Tip: Use momentum CVs 3 and 4 to help minimize any sudden changes in locomotive speed when the throttle is turned up. A quick flick of the throttle knob (i.e., turn it up and then immediately back down) will usually sufficient to activate the airhorn without causing any undo change in actual speed.
Brake Squeal Sensitivity
The automatic brake squeal is activated whenever Tsunami senses a sudden
decrease in the throttle setting (or track voltage in analog mode) as set by
the value in CV 196. This CV can be set to any value from 0 to 126, but as
with CV 195, you will want to use a value from 3 to 10. Too low a setting will
result in the brakes squealing with speed decrease and too high a setting will
require an extreme change in the throttle to trigger the sound.

As an example, a CV setting of 3, requires you to quickly lower the throttle by
at least three speed steps before the brake squeal comes on

Analog Mode
While Tsunami is first and foremost a DCC decoder, it may be used on a
DC powered layout, within certain limitations, by enabling the Analog Mode
feature. First set CV 12 to 1 and then set CV 29 to a value that enables
analog mode as well as any desired DCC parameters such as the address
range and so forth as discussed under Step 2, ‘Configuring the Decoder’
earlier in this manual.

Analog Mode Operation
When analog mode is enabled, you may control your locomotive using an
ordinary powerpack though operation will be a bit different than when running
non-decoder equipped locomotives.

With the powerpack’s throttle set to 0, Tsunami will be silent as it has no
power. The throttle must be turned up to around 5 volts or so to provide
sufficient voltage to power up Tsunami’s internal circuitry. At this point, you
will begin to hear the background sounds, such as the blower and airpump.

Increasing the throttle further to around 7.5 volts or so will set the locomotive
in motion, increasing speed as the throttle is increased. Note that the
direction can only be changed when the locomotive is stopped.

When operating in analog mode, be careful not exceed Tsunami’s input
voltage rating of 27 volts. When your track voltage exceeds 21 volts,
Tsunami will automatically shut down and begin flashing Error Code 10 on its
diagnostic light, as well as the headlight and backup light. When you see this
condition, back down on the throttle immediately.

Important: Tsunami will work best in analog mode when using a
high-quality, electronically regulated powerpack, preferably one that supplies
smooth, filtered DC power. Older rheostat-style powerpacks and pulse
powerpacks will result in erratic and unreliable operation and should not be
used with the Tsunami sound decoder. If your powerpack provides a Pulse
power switch, leave it in the ‘Off’ position.

Depending on the quality of the powerpack’s track voltage, some automatic
sound functions such as the grade-crossing airhorn may require a higher
sensitivity setting than needed for DCC operation to avoid continual triggering
of the sound effect.
Analog Mode Options
In addition to CVs 12 and 29 discussed earlier, there are four other CVs related to analog mode operation:

CV 13, Analog Function Enable 1
CV 14, Analog Function Enable 2
CV 63, Analog Mode Motor Start Voltage
CV 64, Analog Mode Maximum Motor Voltage

Analog Function Enables
CVs 13 and 14 allow you to force a function input to the ON state whenever Tsunami switches over to analog mode. This is most useful for turning on lighting effects when running on a DC powered layout. Sound functions may be turned on in analog mode as well but this is less useful as they will either run continuously or sound just once when the decoder is powered up. Instead, use automatic sound functions discussed earlier to generate sound effects.

To enable any of Functions F1 thru F8, refer to Table O below and circle the numbers corresponding to the function inputs you want to enable. Then add up the circled numbers and program this value into CV 13.

<table>
<thead>
<tr>
<th>CV#</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
</tr>
</tbody>
</table>

Table O. Analog Function Enable 1

Similarly, to enable Function F9 thru F8 or F0, refer to Table P below and circle the numbers corresponding to the function inputs you want turned on. Then add up the circled numbers and program this value into CV 14.

<table>
<thead>
<tr>
<th>CV#</th>
<th>F0(f)</th>
<th>F0(r)</th>
<th>F9</th>
<th>F10</th>
<th>F11</th>
<th>F12</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
</tr>
</tbody>
</table>

Table P. Analog Function Enable 2

Note that when you enable a particular function input for analog mode operation, it has the same effect as pressing the equivalent function key on your DCC cab. Tsunami’s function mapping settings will ultimately determine which output or sound effect is activated by the enabled function.
Analog Mode Motor Control Parameters

CV 63, Analog Mode Motor Start Voltage
CV 63 allows you to increase the voltage difference between when the decoder first powers up and when the locomotive starts to move.

Normally, Tsunami will power up in Analog mode around 5 volts or so and the engine will begin moving around 7.5 volts. Under certain circumstances you may experience a condition where the decoder cycles back and forth between start up sounds and locomotive movement. The problem is usually due to a poorly regulated powerpack output. The sudden increase in load due to the motor starting causes the track voltage to droop which in turn resets the sound decoder. By increasing the setting of CV 63, you can adjust the decoder so that when the motor starts, the track voltage will be sufficiently high so that any droop that occurs will not turn off or reset the decoder.

CV 63 may be set to any value between 0 and 255 corresponding to tenths of a volt. Thus, a setting of 23 adds 2.3 volts to Tsunami's default start voltage of 7.5 volts.

CV 64, Analog Mode Maximum Motor Voltage
CV 64 allows you to set the maximum average voltage that will be applied to the motor when operating in analog mode. This is useful for limiting a locomotive's top speed as well as providing some margin of safety against burning out a motor whose voltage rating may be lower than your powerpack's maximum output.

CV 64 may be set to any value between 0 and 255 corresponding to tenths of a volt. A setting of 180 therefore sets the maximum average motor to 18.0 volts.

Caution: Tsunami only limits the average voltage to the motor. The peak voltage applied to the motor will still be the same as the track voltage.

Transponding
If you are using Tsunami on a layout equipped with Digitrax transponding block detection, you will need to configure Tsunami for transponding-friendly operation. Be aware that the Tsunami itself does not transpond - you will need to install an external transponding decoder in your locomotive to achieve this functionality.

Simply program CV 62 to 1 to configure Tsunami for compatibility with external transponding devices. To disable transponding compatibility (default mode), program CV 62 to 0.

Note: Power to the decoder must be cycled before any changes to this CV will take effect.
Troubleshooting

If you have any difficulties with the operation of your Tsunami Digital Sound Decoder, first check this section for hints on troubleshooting. We have found that most problems are caused by an errant CV value and are easily corrected. When all else fails, try resetting the CV values back to their defaults (see the section ‘Basic Programming’) and try again.

Locomotive doesn’t run but was working.
- Address has been accidentally changed.
- Consist address (CV 19) was accidentally set.
- CV 29 has been changed to select other address.
- Acceleration and braking CVs set to very high values.
- Broken motor wire or track pickup wire.
- **Tip:** Check the decoder’s Pilot Light to confirm presence of track power.

Locomotive never ran.
- See all the above.
- Decoder wired incorrectly.

Locomotive runs but makes no sound.
- Mute function (F8) is on.
- Another function is re-mapped to the Mute function.
- Sound volume CVs have been set to 0.
- Speaker wire is broken.
- Speaker is burned out.

Locomotive runs in a consist but lights and sound effects don’t work.
- Consist functions are disabled. Set CV 21 and 22 to activate desired functions (see Step 4, ‘Configuring for Consist Operation’).

Lights flicker on and off.
- Decoder is in 14 speed-step mode and command station is set to 28 speed steps.

Lights do not work.
- Decoder is in 28/128 speed-step mode and command station is set to 14 speed steps.
- Function mapping is improperly set.
- Burned-out light bulbs.
- If using 1.5 volt micro-bulbs, resistor value is too large.
- Broken lamp wires.

Locomotive just sits and flashes both headlights.
- See next section, ‘Diagnostic Codes’.

Sound works for a while then quits.
- Amplifier is overheating, lower sound volume.
- Decoder is overheating, lower track voltage.
- Speaker is damaged. Replace speaker.
Troubleshooting

Speaker sounds ‘crackly’.
• Sound volume is too high for speaker.
• Speaker is not properly baffled.
• Speaker wire is loose.
• Speaker is damaged.

Decoder will not program.
• Insufficient power on program track. Try using Ops Mode or PTB-100 Programming Track Booster.
• CVs are locked - see ‘Basic Programming’.

Diagnostic Codes
Tsunami has two red LEDs on the circuit board that may be helpful for resolving potential difficulties.

During normal operation, Tsunami monitors a number of its input signals and if a fault is found, reports an error code by flashing the headlight and backup light (if connected). The number of times the light flashes corresponds to the number of the error code. Error codes whose conditions can usually be solved by the user are as follows:

Error 9 - Over-Temperature Fault
An over-temperature fault indicates the core temperature of the decoder has exceeded safe limits. When this error occurs, motor control and sound will be shut off and the error code will continue to flash until the temperature has dropped to a safe level. An over-temperature fault is usually due to inadequate ventilation or a motor load that exceeds the decoder’s rating.

Error 10 - Over-Voltage Fault
An over-voltage fault indicates that the track voltage is greater than 22 volts. When this error occurs, motor control and sound will be shut off and the error code will continue to flash until the voltage is brought below 22 volts.

Note: Tsunami’s absolute maximum voltage input is 27 volts! Track voltages exceeding 27 volts may cause permanent damage to the decoder.

Error 11 - Motor Connection Fault
This error indicates a faulty motor connection has been detected and typically occurs when the motor lead is shorted to a track pickup wire. The motor will not respond until the error is corrected.

Error 16 - CVs Reset to Default
This code is informational only and indicates that all CVs have been reset to their factory defaults.

On rare occasion, the Tsunami Decoder may also report the following error codes which cannot be fixed by the user and require a return to the factory for repair:
• Error 1 - COP Fault
• Error 2 - Software Fault
• Error 5 - EEROM Checksum Failure
• Error 6 - Lower Calibration Voltage Error
• Error 7 - Upper Calibration Voltage Error
Appendix A

Decimal-Hex-Binary Conversion Table

<table>
<thead>
<tr>
<th>DECIMAL</th>
<th>HEX</th>
<th>BINARY</th>
<th>DECIMAL</th>
<th>HEX</th>
<th>BINARY</th>
<th>DECIMAL</th>
<th>HEX</th>
<th>BINARY</th>
<th>DECIMAL</th>
<th>HEX</th>
<th>BINARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>00000000</td>
<td>10</td>
<td>01</td>
<td>00000001</td>
<td>20</td>
<td>02</td>
<td>00000010</td>
<td>30</td>
<td>03</td>
<td>00000011</td>
</tr>
<tr>
<td>40</td>
<td>04</td>
<td>00000100</td>
<td>50</td>
<td>05</td>
<td>00000101</td>
<td>60</td>
<td>06</td>
<td>00000110</td>
<td>70</td>
<td>07</td>
<td>00000111</td>
</tr>
<tr>
<td>80</td>
<td>08</td>
<td>00001000</td>
<td>90</td>
<td>09</td>
<td>00001001</td>
<td>100</td>
<td>0A</td>
<td>00001010</td>
<td>110</td>
<td>0B</td>
<td>00001011</td>
</tr>
<tr>
<td>120</td>
<td>0C</td>
<td>00001100</td>
<td>130</td>
<td>0D</td>
<td>00001101</td>
<td>140</td>
<td>0E</td>
<td>00001110</td>
<td>150</td>
<td>0F</td>
<td>00001111</td>
</tr>
<tr>
<td>160</td>
<td>10</td>
<td>00010000</td>
<td>170</td>
<td>11</td>
<td>00010001</td>
<td>180</td>
<td>12</td>
<td>00010010</td>
<td>190</td>
<td>13</td>
<td>00010011</td>
</tr>
<tr>
<td>200</td>
<td>14</td>
<td>00010100</td>
<td>210</td>
<td>15</td>
<td>00010101</td>
<td>220</td>
<td>16</td>
<td>00010110</td>
<td>230</td>
<td>17</td>
<td>00010111</td>
</tr>
<tr>
<td>240</td>
<td>18</td>
<td>00011000</td>
<td>250</td>
<td>19</td>
<td>00011001</td>
<td>260</td>
<td>1A</td>
<td>00011010</td>
<td>270</td>
<td>1B</td>
<td>00011011</td>
</tr>
<tr>
<td>280</td>
<td>1C</td>
<td>00011100</td>
<td>290</td>
<td>1D</td>
<td>00011101</td>
<td>300</td>
<td>1E</td>
<td>00011110</td>
<td>310</td>
<td>1F</td>
<td>00011111</td>
</tr>
<tr>
<td>320</td>
<td>20</td>
<td>00100000</td>
<td>330</td>
<td>21</td>
<td>00100001</td>
<td>340</td>
<td>22</td>
<td>00100010</td>
<td>350</td>
<td>23</td>
<td>00100011</td>
</tr>
<tr>
<td>360</td>
<td>24</td>
<td>00100100</td>
<td>370</td>
<td>25</td>
<td>00100101</td>
<td>380</td>
<td>26</td>
<td>00100110</td>
<td>390</td>
<td>27</td>
<td>00100111</td>
</tr>
<tr>
<td>400</td>
<td>28</td>
<td>00101000</td>
<td>410</td>
<td>29</td>
<td>00101001</td>
<td>420</td>
<td>2A</td>
<td>00101010</td>
<td>430</td>
<td>2B</td>
<td>00101011</td>
</tr>
<tr>
<td>440</td>
<td>2C</td>
<td>00101100</td>
<td>450</td>
<td>2D</td>
<td>00101101</td>
<td>460</td>
<td>2E</td>
<td>00101110</td>
<td>470</td>
<td>2F</td>
<td>00101111</td>
</tr>
<tr>
<td>480</td>
<td>30</td>
<td>00110000</td>
<td>490</td>
<td>31</td>
<td>00110001</td>
<td>500</td>
<td>32</td>
<td>00110010</td>
<td>510</td>
<td>33</td>
<td>00110011</td>
</tr>
<tr>
<td>520</td>
<td>34</td>
<td>00110100</td>
<td>530</td>
<td>35</td>
<td>00110101</td>
<td>540</td>
<td>36</td>
<td>00110110</td>
<td>550</td>
<td>37</td>
<td>00110111</td>
</tr>
<tr>
<td>560</td>
<td>38</td>
<td>00111000</td>
<td>570</td>
<td>39</td>
<td>00111001</td>
<td>580</td>
<td>3A</td>
<td>00111010</td>
<td>590</td>
<td>3B</td>
<td>00111011</td>
</tr>
<tr>
<td>600</td>
<td>3C</td>
<td>00111100</td>
<td>610</td>
<td>3D</td>
<td>00111101</td>
<td>620</td>
<td>3E</td>
<td>00111110</td>
<td>630</td>
<td>3F</td>
<td>00111111</td>
</tr>
</tbody>
</table>

Tsunami Diesel Sound User's Guide

Page 59
Appendix B

List of Configuration Variables (CVs)

The following is a quick reference list of CVs used by Tsunami Diesel Sound Decoders. See the Tsunami Technical Reference for detailed information about their uses.

CV 1 Primary Address Control CV 137 Coupler Volume
CV 2 Vstart CV 138 Reserved
CV 3 Baseline Acceleration Rate CV 139 Brake Squeal Volume
CV 4 Baseline Braking Rate CV 140 Brake Release Volume
CV 7 Manufacturer Version ID CV 141 Reserved
CV 8 Manufacturer ID CV 142 Reserved
CV 10 BEMF Cutout CV 143 Air Tank Pop Valve Volume
CV 11 Packet Time Out Value CV 145 Reserved
CV 12 Power Source Conversion CV 146 Reserved
CV 13 Analog Function Enable 1 CV 147 Reserved
CV 14 Analog Function Enable 2 CV 148 Reserved
CV 15 CV Unlock Register CV 149 Reserved
CV 16 CV Lock ID Code CV 150 Reserved
CV 17, 18 Extended Address CV 151 Reserved
CV 19 Consist Address CV 152 Equalizer Control
CV 21 Consist Function Group 1 CV 154 62 Hz Equalizer Cut/Boost
CV 22 Consist Function Group 2 CV 155 125 Hz Equalizer Cut/Boost
CV 23 Consist Acceleration Rate CV 156 250 Hz Equalizer Cut/Boost
CV 24 Consist Braking Rate CV 157 500 Hz Equalizer Cut/Boost
CV 25 Speed Table Select Register CV 158 1K Hz Equalizer Cut/Boost
CV 29 Configuration Register 1 CV 159 2K Hz Equalizer Cut/Boost
CV 30 Error Information/Alternate Mode Selection CV 160 4K Hz Equalizer Cut/Boost
CV 31 FL(f) Output Location CV 161 Reverb Control
CV 32 FL(r) Output Location CV 162 Reverb Output Level
CV 35 F1 Output Location CV 163 Reverb Delay
CV 36 F2 Output Location CV 164 Reverb Gain
CV 37 F3 Output Location CV 165 Airhorn Reverb Effect Send Level
CV 38 F4 Output Location CV 170 Bell Reverb Effect Send Level
CV 39 F5 Output Location CV 171 Exhaust Reverb Effect Send Level
CV 40 F6 Output Location CV 172 Air Compressor Reverb Effect Send Level
CV 41 F7 Output Location CV 173 Reserved
CV 42 F8 Output Location CV 174 Reserved
CV 43 F9 Output Location CV 175 Reserved
CV 44 F10 Output Location CV 176 Reserved
CV 45 F11 Output Location CV 177 Reserved
CV 46 F12 Output Location CV 178 Reserved
CV 47 Analog Whistle Control CV 179 Reserved
CV 49-52 Hyperlight Effect Select CV 180 Reserved
CV 49-52 Hyperlight Effect Select (for FL(f), FL(r), Function 5, 6) CV 181 Reserved
CV 59 Flash Rate CV 182 Reserved
CV 60 Crossing Hold Time CV 183 Reserved
CV 61 F11 Braking Rate CV 184 Reserved
CV 62 Transponding Control CV 185 Reserved
CV 63 Analog Mode Motor Start Voltage CV 186 Reserved
CV 64 Analog Mode Max Motor Voltage CV 187 Reserved
CV 66 Forward Trim CV 188 Reserved
CV 67-94 Loadable Speed Table CV 189 Automatic Bell-On Set Point
CV 95 Reverse Trim CV 190 Automatic Bell-Off Set Point
CV 105 User Identifier #1 CV 191 Grade Crossing Horn Sensitivity
CV 106 User Identifier #2 CV 192 Brake Squeal Sensitivity
CV 112 Sound Configuration 1 CV 193 Analog Mode Automatic Sound Configuration
CV 113 Quiet Mode Timeout Period CV 194 Digital Mode Automatic Sound Configuration
CV 114 Bell Ring Rate CV 195 Reserved
CV 115 Airhorn Select CV 196 Reserved
CV 116 Engine Exhaust Control CV 197 Reserved
CV 119 Effect Processor Select CV 198 Reserved
CV 128 Master Volume Control CV 199 Reserved
CV 129 Airhorn Volume CV 200 Reserved
CV 130 Bell Volume CV 201 Reserved
CV 131 Exhaust Volume CV 202 Reserved
CV 132 Air Compressor Volume CV 203 Reserved
CV 133 Dynamic Brake Volume CV 204 Reserved
CV 134 Radiator Fans Volume CV 205 Reserved
CV 135 Reserved CV 206 Reserved
CV 136 Reserved CV 207 Reserved
CV 137 Coupler Volume CV 208 Reserved
CV 138 Reserved CV 209 Kp Coefficient
CV 139 Brake Squeal Volume CV 210 Ki Coefficient
CV 140 Brake Release Volume CV 211 Motor Control Intensity
CV 141 Reserved CV 212 Motor Control Sample Period
CV 142 Reserved CV 213 Motor Control Sample Aperture Time
CV 143 Air Tank Pop Valve Volume CV 214 Motor Control Sample Aperture Time
CV 144 Reserved CV 215 Motor Control Sample Aperture Time
CV 145 Reserved CV 216 Motor Control Sample Aperture Time
CV 146 Reserved CV 217 Motor Control Sample Aperture Time
CV 147 Reserved CV 218 Motor Control Sample Aperture Time
CV 148 Reserved CV 219 Motor Control Sample Aperture Time
CV 149 Reserved CV 220 Motor Control Sample Aperture Time
CV 150 Reserved CV 221 Motor Control Sample Aperture Time
CV 151 Reserved CV 222 Motor Control Sample Aperture Time
CV 152 Equalizer Control CV 223 Motor Control Sample Aperture Time
CV 153 Reserved CV 224 Motor Control Sample Aperture Time
CV 154 62 Hz Equalizer Cut/Boost CV 225 Motor Control Sample Aperture Time
CV 155 125 Hz Equalizer Cut/Boost CV 226 Motor Control Sample Aperture Time
CV 156 250 Hz Equalizer Cut/Boost CV 227 Motor Control Sample Aperture Time
CV 157 500 Hz Equalizer Cut/Boost CV 228 Motor Control Sample Aperture Time
CV 158 1K Hz Equalizer Cut/Boost CV 229 Motor Control Sample Aperture Time
CV 159 2K Hz Equalizer Cut/Boost CV 230 Motor Control Sample Aperture Time
CV 160 4K Hz Equalizer Cut/Boost CV 231 Motor Control Sample Aperture Time
CV 161 Reverb Control CV 232 Motor Control Sample Aperture Time
CV 162 Reverb Output Level CV 233 Motor Control Sample Aperture Time
CV 163 Reverb Delay CV 234 Motor Control Sample Aperture Time
CV 164 Reverb Gain CV 235 Motor Control Sample Aperture Time
CV 165 Airhorn Reverb Effect Send Level CV 236 Motor Control Sample Aperture Time
CV 166 Airhorn Reverb Effect Send Level CV 237 Motor Control Sample Aperture Time
CV 167 Exhaust Reverb Effect Send Level CV 238 Motor Control Sample Aperture Time
CV 168 Air Compressor Reverb Effect Send Level CV 239 Motor Control Sample Aperture Time
CV 169 Air Compressor Reverb Effect Send Level CV 240 Motor Control Sample Aperture Time
CV 170 Bell Reverb Effect Send Level CV 241 Motor Control Sample Aperture Time
CV 171 Exhaust Reverb Effect Send Level CV 242 Motor Control Sample Aperture Time
CV 172 Air Compressor Reverb Effect Send Level CV 243 Motor Control Sample Aperture Time
CV 173 Reserved CV 244 Motor Control Sample Aperture Time
CV 174 Reserved CV 245 Motor Control Sample Aperture Time
CV 175 Reserved CV 246 Motor Control Sample Aperture Time
CV 176 Reserved CV 247 Motor Control Sample Aperture Time
CV 177 Reserved CV 248 Motor Control Sample Aperture Time
CV 178 Reserved CV 249 Motor Control Sample Aperture Time
CV 179 Reserved CV 250 Motor Control Sample Aperture Time
CV 180 Reserved CV 251 Motor Control Sample Aperture Time
CV 181 Reserved CV 252 Motor Control Sample Aperture Time
CV 182 Reserved CV 253 Motor Control Sample Aperture Time
CV 183 Reserved CV 254 Motor Control Sample Aperture Time
CV 184 Reserved CV 255 Motor Control Sample Aperture Time
CV 185 Reserved CV 256 Motor Control Sample Aperture Time
CV 186 Reserved CV 257 Motor Control Sample Aperture Time
CV 187 Reserved CV 258 Motor Control Sample Aperture Time
CV 188 Reserved CV 259 Motor Control Sample Aperture Time
CV 189 Automatic Bell-On Set Point CV 260 Motor Control Sample Aperture Time
CV 190 Automatic Bell-Off Set Point CV 261 Motor Control Sample Aperture Time
CV 191 Grade Crossing Horn Sensitivity CV 262 Motor Control Sample Aperture Time
CV 192 Brake Squeal Sensitivity CV 263 Motor Control Sample Aperture Time
CV 193 Analog Mode Automatic Sound Configuration CV 264 Motor Control Sample Aperture Time
CV 194 Digital Mode Automatic Sound Configuration CV 265 Motor Control Sample Aperture Time
CV 195 Reserved CV 266 Motor Control Sample Aperture Time
CV 196 Reserved CV 267 Motor Control Sample Aperture Time
CV 197 Analog Mode Automatic Sound Configuration CV 268 Motor Control Sample Aperture Time
CV 198 Digital Mode Automatic Sound Configuration CV 269 Motor Control Sample Aperture Time
CV 199 Reserved CV 270 Motor Control Sample Aperture Time
CV 200 Reserved CV 271 Motor Control Sample Aperture Time
CV 201 Reserved CV 272 Motor Control Sample Aperture Time
CV 202 Reserved CV 273 Motor Control Sample Aperture Time
CV 203 Reserved CV 274 Motor Control Sample Aperture Time
CV 204 Reserved CV 275 Motor Control Sample Aperture Time
CV 205 Reserved CV 276 Motor Control Sample Aperture Time
CV 206 Reserved CV 277 Motor Control Sample Aperture Time
CV 207 Reserved CV 278 Motor Control Sample Aperture Time
CV 208 Reserved CV 279 Motor Control Sample Aperture Time
CV 209 Kp Coefficient CV 280 Motor Control Sample Aperture Time
CV 210 Ki Coefficient CV 281 Motor Control Sample Aperture Time
CV 211 Motor Control Intensity CV 282 Motor Control Sample Aperture Time
CV 212 Motor Control Sample Period CV 283 Motor Control Sample Aperture Time
CV 213 Motor Control Sample Aperture Time CV 284 Motor Control Sample Aperture Time
CV 214 Motor Control Sample Aperture Time

Tsunami Diesel Sound User's Guide Page 60
Appendix C

License Agreement

License Agreement
Please read carefully this license agreement before opening the package which contains the Tsunami Sound Decoder. Breaking the seal on the package indicates your acceptance of these license terms. If you have received the Tsunami Sound Decoder pre-installed from your Dealer, then use of the product indicates your acceptance of the agreement. If you do not agree with the terms, you should return the package unopened to the dealer from whom you received the package within thirty (30) days and your money will be refunded.

SoundTraxx Software License Agreement
SoundTraxx provides the computer Software/Firmware embedded within the Tsunami Sound Decoder and any modifications, updates, revisions or enhancements received by you from SoundTraxx or its dealers and licenses its use within the terms set below:

A. You are granted a nonexclusive, nontransferable license to use the Software/Firmware included with your Tsunami sound system only with the Tsunami sound system hardware that you purchased.

B. Title and ownership of the Software/Firmware, Sound Recordings, Documentation and accompanying materials, if any, and all associated intellectual property rights remain with SoundTraxx.

C. The structure, organization, and code of the Software/Firmware are the valuable properties of SoundTraxx. You may not make copies of the Hardware, Software/Firmware, code, or any portions thereof. You are not to modify, adapt, translate, reverse engineer, de-compile, disassemble or create derivative works based on the Hardware or Software/Firmware.

D. Unauthorized copying of the Software/Firmware or Documentation, or failure to comply with the above restrictions, will result in automatic termination of this Agreement. This Agreement does not grant you any intellectual property rights.
Appendix D

Service and Warranty Policy

90-Day Safety-Net Service Warranty
Each SoundTraxx Digital Sound Decoder is tested thoroughly before it is shipped and warranted to be in good working order and free of manufacturing defects. However, in the event that a mistake does occur during installation, SoundTraxx will cover the repair under our Safety-Net Service Warranty. If during the first ninety (90) days you damage your Digital Sound Decoder or it fails to operate, SoundTraxx will repair or replace the system free-of-charge if:

- The original sales receipt showing purchase from an authorized SoundTraxx dealer accompanies the decoder. Receipt must show purchase date to be within the last 90 days. Your original receipt will be returned with your repaired unit.
- There is no damage resulting from unauthorized repairs or modifications. This includes but is not limited to:
 - Removing the shrink tubing from the decoder
 - Drilling or enlarging circuit board holes
 - Cutting or trimming the circuit board
- The Digital Sound Decoder is returned properly packaged, postage paid and insured; SoundTraxx is not responsible for product lost or damaged in transit.

Limits of Liability
The foregoing shall constitute the sole and exclusive remedy of any owner of this product for breach of warranty including the implied warranties of merchantability and fitness. IN NO EVENT SHALL SOUNDTRAXX BE LIABLE FOR SPECIAL OR CONSEQUENTIAL DAMAGES OR FOR THE REPRESENTATIONS OF RETAIL SELLERS.

See the “Support” section of our website at www.soundtraxx.com for complete warranty information.

Contacting Support
Our service department is available Monday - Friday, 9 a.m. - 5 p.m. (Mountain Time).

SoundTraxx Service Department
210 Rock Point Drive
Durango, CO 81301, USA
Phone: (970) 259-0690
support@soundtraxx.com